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Abstract 

Global environmental changes are predicted to have severe consequences for biodiversity and the 

provisioning of ecosystem services and functions. Historic biodiversity losses have been principally 

attributed to habitat loss and degradation, and human overexploitation. Today, however, 

biodiversity is increasingly threatened by anthropogenic climate change.  Establishing the relative 

importance of climate and land use in determining species abundance is important if we are to fully 

understand the potential impacts of future environmental change. Designating species of 

conservation concern relies principally on measures of population change, and is inevitably 

backward- rather than forward-looking. Yet, with projections of substantial future climate change, 

knowing species that will become imperilled in future is also important for conservation planning. 

To date, studies of the impacts of future climate change have focussed on projecting range shifts of 

species, but rarely on projecting species’ abundances, which limits their utility for conservation. In 

this thesis, I investigate the relative importance of climate and land use in determining the recent 

abundance of breeding birds across Europe, and I assess the potential impacts of future climate 

change. I use species abundance models, applying novel approaches, to improve the understanding 

of species-environment relationships. From these, I demonstrate that climate is generally more 

important than land use in determining recent species abundances at a European scale. Importantly, 

however, the importance of abiotic factors for determining species abundance varies across Europe, 

with climate being most important in the north, and land-use in the south. This suggests that 

northerly distributed species will be particularly susceptible to climate change; unfortunate, given 

that this is exactly where climate change is projected to be most pronounced. I further demonstrate, 

for the first time, that the population trends of migratory birds are more closely related to climate 

on their breeding grounds than climate on their non-breeding grounds. My species’ abundance 

models, using climate and habitat data, estimate national abundances of species well, even when 

projected into novel parameter space. I then use these models to project the abundance of species 

under climate change, and demonstrate that substantial changes in both the abundance and 

distribution of species are highly likely. Furthermore, species responses will be individualistic, 

leading to significant changes in the distribution of avian communities. In this thesis I have, in part, 

been able to address some fundamental questions in ecology, including: ‘What limits the 

abundance of migratory species?’ and ‘Is climate or habitat the primary determinant of population 

size in species?’. The work presented here advances our understanding of the potential future shape 

of biodiversity, and should inform forward-thinking conservation. 
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1.1 Introduction 

Rapid population declines and extinctions of species are occurring at a global scale in response to 

the widespread destruction of natural habitats (Koh et al. 2004). Over 30% of species are predicted 

to be lost by 2050 (Thomas et al. 2004). These unprecedented rates of species extinctions will have 

significant consequences for the provision of ecosystem functions and maintenance of natural 

services (Vorosmarty et al. 2010; Tittensor et al. 2014). The global loss of ecosystem services due 

to habitat change is estimated to be $US 4.3-20.2 trillion every year, whilst the contribution to 

human well-being of ecoservices is valued as twice that of global GDP (Costanza et al. 2014). 

Traditionally, the majority of threat to biodiversity has been attributed to local-scale processes, 

such as habitat loss, degradation, and overexploitation and the impacts of invasive species (Pearce-

Higgins & Green 2014). These processes remain significant threats but, arguably, are reducing in 

importance relative to much larger-scale processes: changes in climate and land use (Bellard et al. 

2012). Global temperatures have increased on average by 0.85°C since 1880. The global climate is 

expected to have warmed by an additional 0.3 to 4.8°C by 2100, since 1990 (IPCC 2014). The 

influence that climatic changes have on the environment is now one of the most widely researched 

topics in ecology (Zimmermann et al. 2010; Cardinale et al. 2012). There is already substantial 

evidence that many species have responded to recent warming (Chen et al. 2011), including 

changes in population trends (Sillett, Holmes & Sherry 2000; Gregory et al. 2009; Saether & Engen 

2010), spatial distributions (Parmesan et al. 1999; Walther et al. 2002; Parmesan & Yohe 2003; 

Hickling et al. 2006; Chen et al. 2011; Gottfried et al. 2012; Poloczanska et al. 2013; Burrows et 

al. 2014), life history parameters (Milner, Elston & Albon 1999; Catchpole et al. 2000; Ottersen & 

Loeng 2000; Coulson et al. 2001), phenology (Root et al. 2003; Menzel et al. 2006b; Both et al. 

2009; Both et al. 2010) and community dynamics (Walther et al. 2002; Menéndez et al. 2006; 

Devictor et al. 2008; Walther 2010).  

There is an urgent need for effective conservation to prevent species extinctions and the 

projected loss of biodiversity. Such conservation requires the identification of species and 

communities most at risk from climate change, in order for appropriate action to be taken. 

Traditionally, using ecological niche theory, studies focussed on predicting how the distribution of 

species across a landscape will change in response to fluctuations in environmental conditions 

(Franklin 1995; Guisan & Zimmermann 2000; Guisan & Thuiller 2005; Elith & Leathwick 2009; 

Zimmermann et al. 2010). However, it is population size and trends in population size that 

determine the conservation status of a species (Mace et al. 2008). Furthermore, as abundance is a 

much more finely resolved characteristic than the occurrence of a species, it is more likely to 

reflect variations in habitat quality, especially at fine scales (Johnston et al. 2013). Although there 

have been many studies of the responses of individual populations to changes in environmental 
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conditions (Pearce-Higgins et al. 2015), the impacts of climate change are thought to operate on 

species at a much larger scale (Gregory et al. 2005; Johnston et al. 2013). In addition, causal 

attribution of biological changes to observed climatic change is complicated given the influence of 

a range of non-climatic abiotic and biotic factors (Parmesan & Yohe 2003). Currently 

understanding of what drives changes in the abundance of a species at a national or international 

scales is limited (with the exception of Renwick et al. (2012), Eglington and Pearce-Higgins 

(2012), and Johnston et al. (2013)). 

Processes that take place over large temporal and spatial extents, such as climate and land 

use, are best studied using data collected over the extent at which they operate.  Monitoring of 

various taxa has been very inconsistent over space and time - but one of the best studied taxa is the 

birds. Some populations of birds, particularly those in Europe, have been intensively monitored for 

many years, providing spatially diverse, robust long-term data sets (Bart 2005; Bart et al. 2007; 

Gregory & van Strien 2010; Inger et al. 2014). This project will focus on European breeding birds, 

and how their populations vary both spatially and temporally in relation to variations in their 

environment. In spite of the extensive monitoring that has been carried out on these species, 

producing robust multi-species population estimates at a supranational scale, understanding of the 

large-scale drivers of variations in abundance remains limited. In this thesis, I aim to resolve this, 

disentangling the relative importance of climate, land use and other biotic and abiotic factors in 

driving large scale variations in the abundances of these species.  I will then use this understanding 

to assess the potential effects of future climate change on the abundance of European birds and the 

subsequent alterations to avian communities. By considering the large scale abundance patterns of 

multiple species, these analyses should provide useful predictions of the abundance distributions of 

European birds, identifying those most susceptible to the threats of future climate change.  

In the following section I briefly review a range of impacts that climate change has already 

been reported to have had on biota, including changes in species’ distributions and abundances, and 

shifts in communities. I then focus on European birds and examine how different environmental 

factors drive changes in the populations of European birds, the mechanisms by which they may 

operate and the difficulties associated with understanding the relative importance of these variables 

in driving abundance. Following this, I provide an overview of the methods that can be used to 

model the impacts of environmental change on these species, the associated pitfalls of these 

methods, and the ways in which they can be improved. To better understand the wider implications 

of the results of this project, I discuss how they may aid the management and conservation of these 

species. Finally, I summarise the key points of this review and outline the specific aims of this 

project. 
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1.2   Climate change and its impacts on biodiversity 

Since 1880, global temperatures have increased on average by 0.85°C, with the period between 

1983 and 2012 the warmest 30 year period of the last 1400 years in the Northern Hemisphere 

(IPCC 2014). Temperature increases have been attributed to large increases in the atmospheric 

concentrations of carbon dioxide (CO2), driven by anthropogenic greenhouse gas (GHG) emissions 

since the pre-industrial era (IPCC 2001). Approximately half of anthropogenic CO2 emissions 

between 1750 and 2011 have occurred since the 1970’s (IPCC 2014). Emissions of GHGs are 

driven by population size, economic activities, energy and land use patterns, and climate policy. 

Future climate will depend on the magnitude of future anthropogenic emissions, natural climate 

variability and committed warming caused by past emissions (Moss et al. 2010). By 2035, global 

mean surface temperature is projected to be similar across different ranges of future anthropogenic 

GHG emission scenarios, ranging from 0.3°C to 0.7°C (IPCC 2014). However, by the end of the 

21
st
 Century (2081-2100), predicted global mean surface temperature varies significantly across 

future GHG emission scenarios. Under a scenario of stringent mitigation, temperatures are unlikely 

to exceed 2.0°C. For intermediate and high GHG emission scenarios, warming is more likely than 

not to exceed 2°C (IPCC 2014). The impacts of climate change are strongest and most 

comprehensive for natural systems (Moss et al. 2010). Here I discuss in more detail the observed 

and potential risks for biodiversity caused by a changing climate. 

1.2.1 Range shifts  

With the exception of highly mobile and migratory species, which have the capacity to alter the 

timing or destination of their movements (Walther et al. 2002) many species are unable to respond 

rapidly to the pressures of a fast-changing climate (Parmesan et al. 2013). For these more sedentary 

species, responses to climatic warming should be reflected in slow shifts in their geographic range 

(Parmesan et al. 1999; Thuiller et al. 2005) along both latitudinal (Hickling et al. 2006) and 

altitudinal (Wilson et al. 2005) clines.  These responses are set to occur at the population level 

rather than the individual, with range shifts resulting from changes in the ratio of extinctions to 

colonisations of populations at range boundaries (Parmesan et al. 1999). Expanding range 

boundaries occur where there is net colonisation, often at cool, higher altitudinal and latitudinal 

range margins in conjunction with recent warming. By contrast, retreating range boundaries occur 

where there is net extinction, often at the warmer, lower latitudinal and altitudinal limits of a 

species range (Parmesan et al. 1999; Hill et al. 2002). Given the tangible nature of range shifts, 

changes in species distributions are now one of the mostly widely researched topics in ecology 

(Chen et al. 2011). A multitude of studies (Parmesan et al. 1999; Parmesan & Yohe 2003; Hickling 

et al. 2006; Lenoir & Svenning 2015) have demonstrated consistent trends in range shifts, across 

species from a variety of taxa, as would be expected from species’ physiological constraints 
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(Walther et al. 2002; Devictor et al. 2008; Jiguet et al. 2010b), and shown strong  links to recent 

global temperature increases (Chen et al. 2011; Gottfried et al. 2012; Poloczanska et al. 2013; 

Burrows et al. 2014). For example, Chen et al. (2011) reported that for multiple taxonomic groups, 

ranges have recently shifted to higher elevations at an average rate of 11.0 meters per decade, and 

to higher latitudes at an average rate of 16.9 kilometres per decade. Furthermore, they 

demonstrated a direct link between temperature change and range shifts, with range shifts greatest 

in those areas that experienced the highest levels of warming. Despite documented range shifts, 

there is evidence that species responses to climate change are occurring at a much slower rate than 

climate change itself (Menéndez et al. 2006; Devictor et al. 2008). Distributional shifts of birds and 

butterflies across Europe between 1990 and 2008 caused changes in community composition 

equating to a 37 km and 114 km northwards shift in communities for the respective taxonomic 

groups. However, the northward shifts in temperature across Europe for the same period were even 

faster, equating to 212 km and 135 km lag behind climate for birds and butterflies respectively 

(Devictor et al. 2012). Such time lags occur for three main reasons: limited dispersal which 

restricts colonisation, long generation times slowing demographic responses, and changes to 

interspecific biotic interactions (Cahill et al. 2013; Pearce-Higgins & Green 2014). This ‘migration 

lag’ is of particular concern for plant species (Huntley 1991; Corlett & Westcott 2013). Many 

plants species have few opportunities for dispersal, with the time from seed to first reproduction 

taking between one and thirty years for the majority of species (Moles et al. 2004). Furthermore the 

majority of species have a limited dispersal range, with recent reviews suggesting that most seeds 

are dispersed within 10-1500 m of the parent plant, with only species with small wind dispersed 

seeds routinely exceeding these distances (Clobert et al. 2012; Corlett & Westcott 2013). Herptiles 

(amphibians and reptiles) are another group that may be at particular risk of ‘migration lag’. 

Known for their poor dispersal abilities and the corresponding high levels of endemism (Williams 

et al. 2000), it has been suggested that many survived the last ice age in glacial refugia (Araújo & 

Pearson 2005; Baker et al. 2015). Limited dispersal and high levels of endemism render these 

species less able to adapt to environmental changes, and therefore, are at particular risk of future 

climate change.  

1.2.2 Changes in abundance 

To date, many studies have focussed on the impacts of climate change on the occurrence of species 

(Parmesan et al. 1999; Parmesan & Yohe 2003; Hickling et al. 2006; Chen et al. 2011; Lenoir & 

Svenning 2015),  yet climate has also been shown to strongly influence the abundance of a species. 

Furthermore, as abundance is a more finely resolved variable than occurrence, it can better indicate 

smaller scale changes in habitat quality (Johnston et al. 2013). The impacts of climate on 

individuals or populations may operate either directly through physiological processes, such as 
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metabolism and reproduction, or indirectly through ecosystem processes and altered species 

interactions (Stenseth et al. 2002). For instance, it has been shown that through increases to 

thermoregulatory costs, the mortality rates of Soay sheep (Ovis aries) and red deer (Cervus 

elaphus) are positively correlated with precipitation rates across Scotland (Milner, Elston & Albon 

1999; Catchpole et al. 2000). Warmer temperatures have also been shown to positively affect red 

deer survival rates, with both survival and body mass being negatively correlated with snow depth 

(Loison, Langvatn & Solberg 1999). This may be a consequence of reduced thermoregulatory and 

movement costs but also increased food availability.  

Environmental conditions throughout a species’ range are not uniform, with individual 

populations demonstrating local adaptations to environmental conditions (Both et al. 2010). The 

suitability of an environment for a species is determined by the species’ ecological tolerances 

(Brown, Stevens & Kaufman 1996), which in turn partly determines the local abundance of a 

species (VanDerWal et al. 2009). Individual fitness, and hence population size, will be greatest in 

those areas where environmental conditions fall within the optimal range, whilst in areas where 

environmental conditions are towards the extremes of a species’ ecological tolerances individual 

fitness and local population size will be lower.  Populations on the edge of a species’ range are 

often regarded as being less dense, less fit, and less genetically diverse, rendering them more 

vulnerable to exitnction (Brown, Stevens & Kaufman 1996; Gibson, Van der Marel & Starzomski 

2009).  Local population dynamics will also be influenced by immigration between spatially 

separated populations, with source –sink dynamics operating across the entire ecological niche of 

some species (Pulliam 2000; Grotan et al. 2009). In theory, population growth in a species at 

equilibrium with the environment should be zero (Brown, Stevens & Kaufman 1996). Climate 

change has the potential to disrupt this equilibrium, increasing or decreasing local population 

growth depending on the direction of environmental change in relation to the species’ ecological 

tolerances. This means that climate change can have disparate impacts on populations across a 

species’ range (Jiguet et al. 2010a). For example, in the USA the extinction of some Edith’s 

Checkerspot butterfly (Euphydryas editha) populations have been linked with fluctuations in 

precipitation. The 1975-1977 drought across California led to the extinction of 5 of 21 surveyed 

populations (Ehrlich et al. 1980). Conversely, two further populations went extinct in following 

winters where precipition was 50-150% greater than average (Dobkin, Olivieri & Ehrlich 1987; 

Parmesan, Root & Willig 2000). Studies of individual populations can provide more accurate 

estimates of the local responses to climatic change, than large scale abundance indices. However, 

localised counts are more susceptible to the influence of variations in local environmental 

conditions and net emigration and immigration (Lampila et al. 2006). Furthermore, it is large scale 

indices that are of greatest use to practitioners (Gregory et al. 2005; Gregory et al. 2009; Pearce-

Higgins & Green 2014).  
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1.2.3 Impacts on communities 

The species in a community reflect both the relationships between organisms and their environment 

and the interactions among organisms (Walther et al. 2002). With species responding 

individualistically to climate change, we can expect variation in community composition in future. 

For example, increases in woody shrubs, local extinctions of common species and increases in the 

abundance of formerly rare species in the Sonoran desert in south western United States, have all 

been attributed to recent shifts in regional climate  (Brown, Valone & Curtin 1997).  Additionally, 

the range shifts described in section 1.2.1 often result in community level changes. Range 

expansion at cooler, higher latitude and altitude margins often occurs at a faster rate than range 

retreat at warmer lower latitudes and altitudes (Thomas et al. 2004). Asymmetrical change in 

distribution may result in increases in community species richness, particularly in cool-temperate 

regions (Walther et al. 2002; Walther 2010). In the early 1990’s, upward colonisation in the 

European Alps was shown to increase plant species richness by up to 70% on 30 peaks (Pauli, 

Gottfried & Grabherr 1996). Menéndez et al. (2006) reported that despite declines in individual 

species, the average species richness of British butterfly fauna has increased since 1970-82. They 

also demonstrated that, due to increases in the distribution of habitat generalist species, there had 

been a reduction in overall community specialisation.  Habitat specialist species, with small, range-

restricted populations are regarded as being particularly vulnerable to environmental change 

(Julliard, Jiguet & Couvet 2004). In contrast, habitat generalists are fairly robust to, and may 

potentially even benefit from, habitat disturbance (Warren et al. 2001).  These different responses 

result in ‘biotic homogenisation‘, a process where ecological communities become increasingly 

similar (Devictor et al. 2008; Le Viol et al. 2012). In both Britain (Davey et al. 2012) and France 

(Devictor et al. 2008) ‘biotic homogenisation’ of avian communities has been linked to climatic 

warming.  

With changes in community composition come changes in community dynamics. New 

species interactions may emerge, whilst the balance of existing interactions such as predator-prey 

and competitive interactions may be affected (Walther et al. 2002). These alterations may further 

enhance the decline and extinction probability of a species, already under pressure to adapt and 

adjust to climatic change (Stralberg et al. 2009). The strongest evidence for this comes from the 

marine environment. Long-term fishery data is often related to long-term productivity and survival 

trends in seabirds. With climate being an important determinant of marine productivity, direct links 

can be found between temperature and the abundance of seabird prey species (Cushing 1995). Poor 

breeding success of North Sea Black-legged kittiwakes (Rissa tridactyla) has been associated with 

the negative impact that warm winters have on local Sandeel (Ammodytes marinus) recruitment 

(Frederiksen et al. 2004). In addition to changes in prey availability, top-down community 

pressures may also vary. For some species of Arctic ground-nesting birds, it has been proposed that 
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their low-latitude range margins may be determined by the presence of generalist predators  

(Pienkowski 1984). With poleward range shifts, we may expect more opportunities for these 

species to interact, and consequently that the avian prey will be more vulnerable to population 

decline (Pearce-Higgins & Green 2014). Changes in predator-prey interactions will not be the only 

source of altered competitive dynamic. There is evidence that increases in the populations of 

Collared Flycatcher (Ficedula albicollis) populations  across the Swedish islands of Öland and 

Gotland are having detrimental effects on co-occurring Pied Flycatcher (Ficedula hypoleuca) 

populations. These sympatric species compete for nesting resources, with male Pied Flycatchers 

often prohibited from establishing new territories, reducing overall productivity (Sætre, Post & 

Král 1999).  

1.3  Impacts of environmental change on the populations of European birds 

Over the past 30 years, populations of the commonest bird species across Europe have declined by 

420 million individuals (Inger et al. 2014). Whilst some rarer species have seen their populations 

increase as a result of conservation efforts, for example osprey (Pandion haliaetus) (Bretagnolle, 

Mougeot & Thibault 2008), there have been steep declines in the abundance of more common 

species. Many of these declines have been attributed to the well documented reductions in farmland 

birds caused by agricultural intensification (Donald, Green & Heath 2001). Additionally, some 

widespread species such as House Sparrow (Passer domesticus) and Common Starling (Sturnus 

vulgaris) have also experienced dramatic population declines (62% and 53% respectively). 

Declines in the populations of both rare and widespread species can be linked to deterioration of 

the quality of the environment at both fine and large scales (Gaston & Fuller 2008). 

1.3.1 Climate change 

European climate changed considerably over the 20
th
 century, with an increase in average annual 

surface temperature of 0.8°C (IPCC 2007b). These changes have not been spatially uniform, with 

the greatest observed temperature increases across the Iberian peninsula, mountainous regions and 

some parts of Scandinavia (Haylock et al. 2008). In addition to temperature changes, precipitation 

rates have also varied spatially. Over the 20
th
 century, average annual precipitation across Northern 

Europe increased by between 10 and 40% but decreased by 20% across Southern Europe (IPCC 

2007a). Furthermore, these environmental changes are set to increase over the next century, with 

mean annual temperature across Europe projected to increase by a further 2.5 - 5.5 °C. Mean 

annual precipitation will also vary, being projected to increase across north and central Europe by 

up to 20%, but to decrease by up to 45% across southern Europe (IPCC 2007b). 
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The effects of climatic changes on the distributions of European birds are already being 

reported (Devictor et al. 2008; Jiguet et al. 2010b; Le Viol et al. 2012).  A European wide study 

showed that species predicted to gain range across Europe during the 21
st
 century have increased, 

whilst species predicted to experience range reductions have declined (Gregory et al. 2009). 

Significant expansions at northern range limits have been observed for a variety of central 

European and Arctic species (Brommer, Lehikoinen & Valkama 2012; Virkkala et al. 2014). 

Additionally, range contractions of on average 27% between 1974 and 2010 have been reported for 

many northern-boreal species, including Brambling (Fringilla montifringilla), Red-necked 

Phalarope (Phalaropus lobatus) and Spotted Redshank (Tringa erythropus) (Virkkala et al. 2014; 

Virkkala & Lehikoinen 2014). Projections of future climate change suggest that species’ ranges 

will continue to track changes in climate and shift polewards.  It has been predicted that, by 2050, 

71% of species will experience reductions in range size with a median poleward shift of 335 km 

(Barbet-Massin, Thuiller & Jiguet 2012). Others have projected that, under climate scenarios for 

2070-2099, the future breeding ranges of European birds may reduce by 28% and overlap current 

ranges by 42% (Huntley et al. 2008).  

In addition to shifting ranges, other mechanisms by which climate can affect the 

populations of European birds have been widely reported (Gregory et al. 2009). For instance, the 

cold winters associated with higher latitudes pose particular challenges for the species that reside in 

those areas. Long-term studies of the UK population of Great Tits (Parus major) reveal that 

fluctuations in both population size and survival rate are correlated with snow cover, with 

overwinter juvenile survival rate reduced from 40%  to 25% in a snowy winter (Robinson, Baillie 

& Crick 2007). Wintering Great Tits feed predominantly on beech masts, the abundance of which 

has been shown to influence overwinter survival (Grotan et al. 2009). With heavy snow cover, 

these birds have reduced access to these food resources, partially explaining population declines 

(Robinson, Baillie & Crick 2007). The survival rates of some species of owls have also been 

correlated with snow cover. Altwegg et al. (2006) reported that the populations of Barn Owls (Tyto 

alba) in Switzerland crashed after harsh winters as deep snow cover reduced access to their small 

mammal prey.  Fluctuations in winter temperature have also been correlated with variations in the 

populations of waders (Charadrii, (Pearce-Higgins & Green 2014)). When the ground freezes, soil 

invertebrates become inactive or burrow deeper, which is problematic for species such as Golden 

Plover and Lapwing (Vanellus vanellus) which feed on them (Pearce-Higgins & Yalden 2003). It is 

not only winter conditions that influence avian populations, but also those during the breeding 

season. The main food of Song Thrushes (Turdus philomelos) during the breeding season is 

earthworms, the populations of which are strongly determined by soil moisture. When it is dry, the 

earthworms tend to be inactive or too deep for the thrushes to access and, presumably as a 
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consequence, populations of Song Thrushes have been found to be negatively correlated with 

drought conditions (Robinson, Baillie & Crick 2007; Pearce-Higgins & Green 2014). 

Climate change affects the timing of life history events, with many species demonstrating 

advancements in their reproductive phenology (Root et al. 2003; Menzel et al. 2006b; Both et al. 

2009; Both et al. 2010). Parmesan and Yohe (2003) reported that across 677 species from seven 

taxonomic groups there had been a mean advancement in spring phenological events of 2.3 days 

per decade over the past four decades. However, these advancements are often species specific and 

not in synchrony with the phenological changes in other trophic levels (Visser, Both & Lambrechts 

2004; Visser & Both 2005; Both et al. 2009). In particular, the timing of avian breeding and the 

peak abundance of food resources during the breeding season may be decoupled (Both & Visser 

2005; Pearce-Higgins, Yalden & Whittingham 2005). For example,  Golden Plover (Pluvialis 

apricaria) time the hatching of their first clutches to coincide with the emergence of adult tipulids, 

their main prey (Pearce-Higgins & Yalden 2004). Increases in spring temperature have been shown 

to correlate with advancements in the timing of Golden Plover first laying dates and of tipulid 

emergence (Pearce-Higgins, Yalden & Whittingham 2005). However, the predicted magnitude of 

these changes in response to future climate change were different, with potential advances in 

Golden Plover first laying dates of 25 days but of only 12 days in tipulid emergence. This 

mismatch was simulated to reduce the success of Golden Plover breeding attempts. Passerines from 

temperate regions have also shown variations in their breeding phenology in response to climatic 

change (Crick & Sparks 1999; Crick 2004). These species have the capacity to ameliorate the 

effects of climate change on breeding phenology through alterations to clutch size, incubation 

period and the number of broods raised (Visser et al. 2003; Visser, Both & Lambrechts 2004; 

Visser, Holleman & Gienapp 2006; Both et al. 2009). Some insectivorous species, such as some 

tits (Parus sp.) rely on caterpillars in oaks as the main food source for their offspring and therefore 

must time reproduction so that the maximal needs of their offspring coincides with the timing of 

peak caterpillar abundance (Visser, Holleman & Gienapp 2006). Both budburst and the peak 

biomass of herbivorous caterpillars have advanced in response to increasing spring temperatures 

(0.17 d yr 
-
1 and 0.5 d yr

-1
 between 1988 and 2005 respectively) (Both et al. 2009). Despite this, 

not all populations of tits have demonstrated similar advancements in reproductive phenology; 

some have compensated for reduced productivity by increasing the frequency of second broods 

(Visser et al. 1998; Visser et al. 2003).   

1.3.2 Land use change 

The widespread declines of some species of European birds have been widely linked to changes in 

habitat management (Donald, Green & Heath 2001; Donald et al. 2006; Lemoine et al. 2007; 

Sanderson et al. 2015). This is particularly true of agricultural environments, where the large scale 
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declines of farmland birds have been largely attributed to the processes of agricultural 

intensification (Gregory et al. 2005; Donald et al. 2006). The process of intensification 

encompasses a wide range of mechanism including the increased use of pesticides and fertilisers, a 

greater degree of mechanisation, changes in crop types, the timing of sowing and harvesting of 

crops, increases in stocking densities, and the spread of monocultures (Vickery et al. 2001; Newton 

2004b), all of which have resulted in some key changes in agricultural habitats. Homogenisation of 

the agricultural landscape and the loss of natural and semi-natural habitats has reduced the 

suitability of these areas  for those species that require a variety of habitats for foraging or nesting, 

including Hoopoe (Upupa epops, Barbaro et al. 2008), Red-backed Shrike (Lanius collurio, 

Brambilla et al. 2010), Common Redstart (Phoenicurus phoenicurus, Schaub et al. 2010), Lapwing 

(Vanellus vanellus, Galbraith 1988) and Skylark (Alauda arvensis, Chamberlain & Gregory 1999). 

In addition, the intensification of crop management has been shown to have severe effects on some 

species. For example, the move from spring to winter sown cereals has reduced the availability of 

both important nesting habitats for Skylarks (Chamberlain et al. 1999) and overwinter stubbles, an 

important food resource for many species during the non-breeding season (Wilson, Taylor & 

Muirhead 1996). Conversely, in some parts of Europe, the abandonment of farmland habitat has 

become a key issue. Under the Common Agricultural Policy (CAP) and subsequent drive for 

increased production, many less productive agricultural systems have become economically 

unviable,  accelerating rates of land abandonment (Van Zanten et al. 2014). The resulting re-

growth of forest and loss of habitat heterogeneity (Klijn 2004) poses a severe risk for species which 

favour open breeding habitats (Sirami et al. 2008; Vallecillo, Brotons & Thuiller 2009; Nikolov 

2010; Zakkak et al. 2015). For example, observed population declines in open habitat species such 

as Tawny Pipit (Anthus campestris) and Linnet (Carduelis cannabina) have both been associated 

with land abandonment and vegetation succession (Fonderflick et al. 2010). 

 Changing patterns in woodland management have also been associated with declines in 

some species of European birds. With reductions in traditional coppicing of broadleaved 

woodlands, many woodlands across Europe are now subject to little or no management (Hopkins & 

Kirby 2007). Combined with increased browsing pressures from expanding deer populations, 

understory vegetation and open habitats are being increasingly lost from many lowland woods and 

forests (Fuller et al. 2007; Holt, Fuller & Dolman 2011). The loss of understory vegetation affects 

not only the availability of nesting and foraging habitats (Holt, Fuller & Dolman 2011), but also the 

quality of associated food resources through alterations to invertebrate communities (Stewart 

2001).  

 Wetlands, which contain a large diversity of habitats and are highly productive, provide 

important breeding and wintering habitat for many species (Paillisson, Reeber & Marion 2002). 
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However, these habitats are threatened by direct habitat loss, in particular from the drainage for 

agricultural habitats, deforestation for wood for construction and fuel, and embankment of 

floodplains for flood protection. In all, it has been estimated that 80% of the original area of 

European wetlands has been lost, mostly in the past 75 years (EU 2007; Verhoeven 2014), resulting 

in significant range reductions for globally threatened species such as Great Bittern (Botaurus 

stellaris (Gilbert et al. 2005)). Large scale hydrological changes, such as the creation of reservoirs, 

have immediate effects on some communities of water birds (Faragó & Hangya 2012), whilst water 

conditions have many direct and  indirect impacts on the abundance and composition of water birds 

(Osiejuk et al. 1999; Paillisson, Reeber & Marion 2002). For example, a link has been 

demonstrated between declines in marshland species such as Great Bittern (Botaurus 

stellaris), Black Tern (Chlidonias niger), Sedge Warbler (Acrocephalus schoenobaenus) and Great 

Reed Warbler (Acrocephalus arundinaceus) and increases in the level of standing water and 

eutrophication across The Netherlands (van Turnhout, Hagemeijer & Foppen 2010).  

1.3.3 Migration and environmental change 

126 species of European birds are regarded as Afro-Palaearctic migrants under the classification 

strategy outlined by BirdLife (2004). This amounts to approximately 2.1 billion individual birds 

(Moreau 1972; Wilson & Cresswell 2006; Hahn, Bauer & Liechti 2009). Analyses of long term 

datasets of the abundance of Afro-Palaearctic migrants have shown that these species have 

experienced population declines of up to 40%, a rate of change far exceeding any observed in the 

populations of their resident and short-distance migrant counterparts  (Sanderson et al. 2006; 

PECBMS 2009; Vorisek et al. 2010; EBCC 2013; Cresswell 2014; Vickery et al. 2014). These 

declines are likely to be a consequence of their complex annual cycles, long migration routes, and 

dependence on multiple sites, breeding across Europe and over-wintering in sub-Saharan Africa 

(Newton 2004a; Newton 2008; Newton 2010). Not only are these species susceptible to the 

pressures of environmental change on their European breeding grounds, as outlined above, they are 

also exposed to additional pressures on their stop-over and over-wintering sites and during 

migration. 

Away from the breeding grounds, Afro-Palaearctic migrants rely heavily upon wetland, 

savannah and woodland habitats across the Sahel, where conditions are intimately linked with 

precipitation rates (Vickery et al. 2014). When rainfall in these areas is high, food and habitat 

resources available to migrants are plentiful (Ockendon, Johnston & Baillie 2014). Yet, despite an 

apparent increase in rainfall since the 1990’s (Fontaine et al. 2011), drought conditions have 

predominated across the Sahel since the 1960’s (Nicholson 2000; Fensholt & Rasmussen 2011). 

The resulting large-scale habitat changes have been widely linked to the declines of Afro-

Palaearctic migratory birds (Sanderson et al. 2006; Zwarts & van Horssen 2009; Ockendon, 
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Johnston & Baillie 2014). It has been suggested that this operates through impacts on overwinter 

survival, which has been demonstrated for Hirundidae (Robinson, Balmer & Marchant 2008), 

Ciconiformes (Nevoux, Barbraud & Barbraud 2008) and Sylviidae (Baillie & Peach 1992; Peach, 

Hanmer & Oatley 2001). Alternatively, it may operate through carry-over effects on phenology and 

productivity in the following breeding season (Gordo et al. 2005; Zwarts & van Horssen 2009).  

Drought conditions may also have compounded the effects of other anthropogenically induced 

habitat changes (Vickery et al. 2014), such as the widespread deforestation of Sahelian woodlands 

for conversion to agriculture, fuel and grazing (Wilson & Cresswell 2006).  Extensive losses of 

woodland and forest habitats have been documented across sub-Saharan Africa. In Senegal, it is 

was estimated that 33,000 hectares of woodland and forest were being lost every year (Tappan et 

al. 2004). Forest losses have been shown to have a significant negative effect on the populations of 

Afro-Palaearctic migrants. For example, an 8% reduction in Nigerian tree density correlated with a 

95% decline in the local Subalpine Warbler (Sylvia cantillans) population (Cresswell et al. 2007). 

There is some evidence that, as for the European breeding ranges, the overall size of 

species’ non-breeding ranges will be reduced as a consequence of spatial shifts in areas of suitable 

climate (Barbet-Massin et al. 2009). However, the consistent directionality in shifts shown in 

projections of future European ranges is not evident in projections of future African ranges 

(Doswald et al. 2009). This may be a consequence of the less clear environmental drivers of 

species’ distributions in the tropics, with suggestions that precipitation plays a more important role 

(Gordo et al. 2005). Importantly though, the distance between breeding and non-breeding ranges is 

set to increase under projected future climate change, thus increasing energetic costs and the 

probability of migration mortality (Alerstam, Hedenström & Åkesson 2003; Doswald et al. 2009). 

 Afro-Palaearctic migrants may also be more vulnerable to the effects of phenological 

mismatch, with their arrival on the breeding grounds constrained by conditions on the non-breeding 

grounds and during passage (Both & Visser 2001; Both et al. 2006; Both et al. 2010). With 

advancements in spring phenology (outlined above in section 1.3.1), mistimed arrival on the 

breeding ground may have severe consequences on fitness. Short-distance migrants, those species 

which spend their non-breeding season in southern Europe instead of sub-Saharan Africa, have 

advanced their spring migration phenology to a greater extent than have Afro-Palaearctic migrants 

(Saino et al. 2004; Saino et al. 2011). Whilst some species of Afro-Palaearctic migrants use 

endogenous responses to environmental cues, such as photoperiod, to initiate their spring migration 

(Knudsen et al. 2011), these cues will not necessarily reflect conditions on the breeding grounds.  

The cues used by short-distance migrants may be more closely linked to breeding ground 

conditions, potentially explaining the reduced ability of Afro-Palaearctic migrants to respond 

adaptively to climate change (Coppack et al. 2003; Coppack et al. 2008). Arrival dates may also be 
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affected by conditions during migration. For example, the first arrival dates to the Iberian peninsula 

of Cuckoos (Cuculus canorus), Common Swifts (Apus apus), and Nightingales (Luscinia 

megarhynchos) are linked to temperatures in passage areas (Gordo et al. 2005). The importance of 

ecological conditions in passage areas is greater for individuals migrating to higher latitudes, with 

better weather conditions improving refuelling rates and allowing for a faster progression (Ahola et 

al. 2004; Both, Bijlsma & Visser 2005). 

1.4 Disentangling the effects of climate and land use change on species’ abundances 

Climate can have both direct and indirect effects on the productivity, survival and abundance of 

species. For these reasons, climate is often regarded as the ultimate driver of species’ distribution 

and abundance (Thuiller, Araujo & Lavorel 2004). With this assumption, we would expect the 

ranges and populations of species to vary in response to climatic change. Yet other abiotic and 

biotic factors also have a role in influencing species’ distribution and abundance, for example land-

use, inter- and intra-specific interactions and species specific traits (Boulangeat, Gravel & Thuiller 

2012; Wisz et al. 2013). When considering the global distribution of suitable climates for a species, 

suitable habitats can often be found on multiple continents,  which only the most widespread of 

species will have occupied (Pearce-Higgins & Green 2014). Many species are clearly limited not 

only by abiotic factors, but also their ability to disperse, and the distribution of prey and predators 

(Boulangeat, Gravel & Thuiller 2012; Wisz et al. 2013). Furthermore, those species susceptible to 

the effects of anthropogenic activities are unlikely to be in equilibrium with climatic conditions, 

especially given that human activities are only weakly correlated with climate  (Thuiller, Araujo & 

Lavorel 2004). For example, the persecution of birds of prey across Great Britain, has had 

significant impacts on survival and distribution (Whitfield et al. 2004). Some human activities have 

also increased species’ ranges. As a  result of substantial increases in the extent and volume of 

trade and transport over the past century, many species have extended their range beyond what 

would be physically possible due to human introductions, both intended and accidental (McGeoch 

et al. 2010). If we are to accurately assess the effects of projected climate change on a species, it is 

important that we understand the relative importance of all of these factors in driving the 

distribution and abundance of a species.  

Disentangling the relative importance of climate, versus other abiotic and biotic factors that 

cause changes in species’ abundance and distribution, is difficult. Although climate is often 

regarded as the ultimate determinant of species’ distribution and abundance, geology, land use, and 

topography also all operate on species at increasingly finer scales (Franklin 1995; Thuiller, Araujo 

& Lavorel 2004). Despite the inference from recent studies that the effects of climate change have 

overtaken land use change (Moller, Rubolini & Lehikoinen 2008; Gregory et al. 2009), care needs 
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to be taken when attributing changes in distribution and abundance to climate change. Eglington 

and Pearce-Higgins (2012) demonstrated that despite the long term abundance of many farmland 

bird species, including Grey partridges, (Perdix perdix), Skylarks (Alauda arvensis) and Corn 

Buntings (Emberiz calandra), being closely associated with fluctuations in weather variables, the 

precipitous population declines of these species are more strongly linked with directional trends in 

agricultural intensification. Furthermore, species’ sensitivity to climate may vary spatially (Finley 

2011; Beale, Brewer & Lennon 2014; Jarzyna et al. 2014). Habitat differences in species’ 

sensitivity to temperature may confound the detectability of the relative impacts of climate and 

land-use change, especially for large scale analyses. Despite being of political and scientific 

interest, the relative importance of these variables in driving both distribution and abundance has 

rarely been tested (Thuiller, Araujo & Lavorel 2004; Eglington & Pearce-Higgins 2012; Renwick 

et al. 2012), and never at an international scale.  

Understanding the drivers of species’ distribution and abundance is further complicated for 

those species that rely upon multiple sites (Sillett & Holmes 2002; Robinson et al. 2009; Newton 

2010). Migratory species demonstrate complex annual cycles, dependent on multiple sites 

including both breeding and non-breeding grounds, along with migratory stop-over sites. 

Susceptibility to environmental change in any one of these multiple habitats renders these species 

particularly vulnerable to the pressure of anthropogenic induced habitat change (Finch et al. 2014; 

Runge et al. 2014). Changes in climate and land use can limit populations of these species, along 

with other anthropogenic activities such as hunting and persecution (Vickery et al. 2014). 

Disentangling the relative effects of these factors, and understanding which of the residence and 

staging areas are critically limited, complicates understanding of population change for migratory 

species (Ockendon et al. 2012).  

1.5 Modelling species distribution and abundance 

Understanding the consequences of climatic change on species could inform their future 

conservation status and priority for conservation action. Although some impacts of recent climatic 

change on species have already been observed, the magnitude of future climate change poses an 

even greater threat. Given the complexity of the relationship between climate and species’ 

distribution and abundance, predicting the impacts of climate for multiple species is difficult. 

However, by building on the role that climate has in determining a species’ distribution (see section 

1.2.1), statistical models of the geographic relationship between species’ occurrence and abundance 

and environmental variables can be built. These widely applicable statistical models can then be 

used to make future projections of species distribution and abundance under various future climate 

scenarios (Pearce-Higgins & Green 2014). 
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1.5.1 Species distribution models 

Species distribution models (SDMs) or ecological niche models are statistical models of the 

geographical distribution of species in relation to environmental predictor variables (Guisan & 

Zimmermann 2000). As a result of both methodological and computational advancements, the 

application of SDMs in forecasting the potential effects of anthropogenic activity has grown 

exponentially since the 1990’s (Franklin 1995). There are hundreds - if not thousands - of papers 

detailing their application to a broad set of ecological, evolutionary and conservation questions 

(Zimmermann et al. 2010), and numerous reviews describing their methodology and framework 

(Franklin 1995; Guisan & Zimmermann 2000; Guisan & Thuiller 2005; Elith & Leathwick 2009; 

Zimmermann et al. 2010). Many papers have focussed on improving the statistical bases of SDMs, 

including the implementation of new statistical methods. Linear regression models formed the basis 

of early SDMs, but are often too simplistic for realistic representation (Elith, Leathwick & Hastie 

2008). The use of  generalised linear regression models (GLM; Mccullagh 1984) and generalised 

additive models  (GAM; Hastie & Tibshirani 1990) allow for both non-linear relationships and data 

with non-normal error structure to be modelled. More recently, machine learning techniques, such 

as boosted regression trees (BRT; Elith, Leathwick & Hastie 2008) and random forests (RF; Cutler 

et al. 2007) have been utilised. In contrast to statistical approaches (GLM and GAM), machine 

learning approaches avoid starting with a data model and instead use an algorithm to learn the 

relationship between a species distribution and the predictor variables (Breiman 2001b; Elith, 

Leathwick & Hastie 2008). SDM performance is also dependent upon the data sampling design 

used for model parameterisation. For example when species are rare, simple random sampling 

procedures can be highly inefficient, as often sampled sites are unlikely to provide suitable habitat 

for a species. In these cases random-stratified sampling can be used to ensure a more representative 

sample (Rushton, Ormerod & Kerby 2004; Guisan et al. 2006). Sample size and the prevalence of 

species across the sampling area can also affect the accuracy of SDMs (Wisz et al. 2008). Model 

quality is clearly influenced by the number of records used in model building (Pearce & Ferrier 

2000; Allouche, Tsoar & Kadmon 2006; Guisan et al. 2006). For species with a narrow band of 

thermal tolerances, a small sample size may be sufficient to characterise their distribution in 

relation to environmental predictors. However, for the majority of species, a large sample size is 

often required to fully sample the range of environmental conditions in which a species is present 

(Kadmon, Farber & Danin 2003). Another area of model development concerns dealing with 

spatial autocorrelation, which is often present in spatial ecological datasets. This occurs where 

more proximate samples demonstrate a greater degree of similarity in their ecological 

characteristics than samples more distant from one another (Legendre 1993). Failure to account for 

this phenomenon when modelling species distributions, leads to the violation of standard 

assumptions of independence, hence inflating type I errors (Dormann 2007a).  
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The idea that models trained purely on climatic variables can quantify the impacts of 

climate change on species has been questioned (Araújo & Luoto 2007; Austin & Van Niel 2011). 

Many species have already shown range shifts in response to climatic change; however, the rate of 

these shifts is not as fast as would be expected if climate was the only limiting factor (Menendez et 

al. 2006; Devictor et al. 2008). The predictive power of SDMs is subject to the choice and scale of 

predictor variables, with SDMs producing less reliable predictions when important local or regional 

factors are missing (Thuiller et al. 2003; Thuiller, Araujo & Lavorel 2004). For example, local 

topography may create important refugia for species, which are not recognised in coarse-scale 

climate data, whilst differences in light regimes between north- and south- facing aspects in 

temperate regions produce differences in temperature that can equate to 200 km poleward shift 

(Austin & Van Niel 2011; Bennie et al. 2014; Lawson et al. 2014). The inclusion of land use 

variables is often reported to improve the explanatory power of SDMs, particularly when species’ 

distributions are poorly explained by climate (Thuiller, Araujo & Lavorel 2004; Barbet-Massin, 

Thuiller & Jiguet 2012). It is clear that both climate and land-use shape species distributions, 

however, as mentioned above (see section 1.4) the relative importance of these variables is largely 

unknown (Eglington & Pearce-Higgins 2012; Renwick et al. 2012). This is further complicated by 

the fact that some land use types are strongly determined by climatic factors, for example wetlands 

(Merot et al. 2003) and agricultural lands (Ramankutty et al. 2002). Even though the addition of 

land use variables does not necessarily improve the predictive accuracy of SDMs (Thuiller, Araujo 

& Lavorel 2004), their inclusion may significantly alter projections of species distributions under 

future climatic change.  

1.5.2 Modelling abundance 

Despite many recent advancements in the statistical bases of SDMs (see section 1.5.1), confidence 

in the predictive capabilities of these models continues to be undermined by conceptual, biotic and 

algorithmic flaws (Higgins, O'Hara & Römermann 2012). In addition to methodological 

advancements, it may be that improvements to model performance can be achieved by increasing 

the quality of data available for model training. Most SDMs use presence only or presence/absence 

data to characterise the climatic limits of a species’ range and to predict how species distributions 

may change in response to climate change.  Studies have compared the relative merits of these two 

forms of data (Brotons et al. 2004; Elith et al. 2006; Pearson et al. 2006), but few have considered 

the improvements that could be achieved through the use of abundance data. It may be that the 

greater information content in abundance data would enable a better assessment of the quality of an 

environment for a species, in turn allowing for better discrimination of species range boundaries. 

Furthermore, even though trends in range extent are important for assessing the threat status of a 

species, it is population size and trends that are the closest correlate of extinction risk (O'Grady et 
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al. 2004). It has been shown that population declines may occur before any reduction in a species’ 

range is observed (Chamberlain & Fuller 2001), making population size a more sensitive indicator 

of the effects of future climatic change on a species (Pearce-Higgins & Green 2014). With this in 

mind, and combined with the fact that it is changes in population that are used for assessing a 

species' conservation status and priority for action (International Union for Conservation of Nature 

2001), directly modelling abundance rather than presence/absence will likely be more informative. 

 To model a species’ abundance distribution, a similar range of techniques can be used to 

those that model presence/absence data, including both statistical and machine learning approaches, 

as outlined in section 1.5.1. However, abundance modelling poses some additional problems that 

need to be accounted for when specifying model structure.  In particular, the abundance of a 

species in any given locality is far more susceptible to the influence of non-climatic factors on 

environmental quality than occurrence data. For example, a regression of the abundance of 17 

breeding seabirds and 45 wintering water birds in Western Europe on local climate variables 

explained only 1.2% and <0.1% of the variation in fine scale abundance patterns (Johnston et al. 

2013) . The same model, however, explained 56% of the variation in large scale population trends. 

Climate may explain large scale population trends, but non-climatic factors and interactions may 

have greater importance at a site specific level. These non-climatic factors may relate directly to the 

environment, such as land use, or alternatively result from inter and intra-specific interactions. 

Birds often demonstrate aggregate or colonial behaviours. Local aggregation as a consequence of 

behaviour would not be predicted by simple climate-only models (Pearce-Higgins & Green 2014). 

It is desirable then to include non-climate explanatory variables that may better describe habitat 

quality or the abundance and distribution of allo- and conspecifics, if we are to forecast the 

abundance of species under climate projections with certainty (Renwick et al. 2012).  

1.6  Implications of results for conservation and management 

Despite the many advancements in the statistical methods used for modelling the distribution and 

abundance of species (Franklin 1995; Guisan & Zimmermann 2000; Guisan & Thuiller 2005; Elith 

& Leathwick 2009; Zimmermann et al. 2010), there are still areas for improvement. Cross-species 

analyses are often used to provide general insights into the susceptibility of species to future 

environmental change (Bagchi et al. 2013; Baker et al. 2015). By modelling abundance rather than 

distribution, both the predictive accuracy of these models and the management application of these 

approaches may be enhanced. Models of spatial variations in species abundance will allow greater 

conservation priority to be assigned to those areas where species occur at the highest density both 

now and in the future. With peripheral populations more likely to become extinct due to natural 

population fluctuations, there are more risks associated with conserving these populations. 
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Identifying those areas of a species’ future distribution where they will occur at a higher density 

and most likely to persist, and targeting conservation efforts accordingly, will ensure greater 

success (Gibson, Van der Marel & Starzomski 2009; McCarthy et al. 2011). Furthermore, with 

population trends being the closest correlate of extinction risk, predictions of abundance are of 

more use than range predictions in determining the conservation status and priority for action of a 

species (International Union for Conservation of Nature 2001; O'Grady et al. 2004). 

Effective conservation measures require understanding of the causal factors driving a 

species population trends. The best example of this is the application of agri-environment schemes 

to increase breeding densities of many farmland bird species (Newton 2004b). As explained in 

section 1.4, the population declines of many species of farmland bird correlate with recent climatic 

changes, however they have mostly been attributed to agricultural intensification (Donald, Green & 

Heath 2001; Donald et al. 2006). The decline of Grey Partridge (Perdix perdix) despite being 

closely associated with fluctuations in temperature and precipitation (Eglington & Pearce-Higgins 

2012), can actually be directly attributed to reductions in field margins. The loss of these less 

intensively managed areas, results in a scarcity of nesting habitats and increased predation. 

Furthermore, widespread application of pesticides reduces insect abundance, an important food 

resource for chicks (Green 1984). With this knowledge, local conservation efforts, for example the 

non-spraying of field margins, have helped stabilise the national population (Eglington & Pearce-

Higgins 2012). Whilst the effectiveness of localised conservation has been enhanced by the 

application of better informed measures, quantitative multispecies applications to identify priority 

landscapes at national and international scales are currently lacking (Moilanen et al. 2005). 

The current reliance of conservation efforts on static protected areas may not avert species 

losses in the face of climate projections given the poleward and altitudinal shifts in the distributions 

of species  (Parmesan et al. 1999; Hickling et al. 2006; Brommer, Lehikoinen & Valkama 2012; 

Virkkala & Lehikoinen 2014). Europe currently has the world’s most extensive network of 

conservation areas, with more than 100,000 sites across 54 countries (Araújo et al. 2011; Romao & 

Reker 2012). Yet these protected areas will not be effective in conserving a large proportion of 

European plant and terrestrial species under projected climate change. By 2080, 58% of vertebrate 

and plant species are predicted to lose suitable climate within existing protected areas (Araújo et al. 

2011). It is widely recognised that to address the challenge of the reduced efficacy of protected 

areas in the future, new conservation areas will need to be designated (Alagador, Cerdeira & 

Araújo 2014). The identification and designation of new conservation sites, however, is expensive 

and conservation budgets are limited (Hannah et al. 2007; Wise et al. 2012). The combination of 

improved predictions of species spatial abundance patterns and the identification of core habitats 

important for species preservation will facilitate more informed spatial conservation planning. Both 
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areas that will remain climatically suitable with time, and those areas that will become increasingly 

suitable in the future, will be prime candidates for future conservation efforts,  can be identified 

(Vos et al. 2008; Alagador, Cerdeira & Araújo 2014). Furthermore, those areas providing 

important links and corridors between current and future reserves, aiding the movement of species 

between these sites, can be conserved (Williams et al. 2005; Chetkiewicz & Boyce 2009; Saura, 

Bodin & Fortin 2014). 

For species for which connected networks are insufficient for the continued persistence 

under climatic change, assisted colonisation may provide an alternative solution (McLachlan, 

Hellmann & Schwartz 2007; Hoegh-Guldberg et al. 2008). Species with poor dispersal abilities 

may be unable to spread into new climatically suitable areas, resulting in reductions in realised 

niches and increased extinction risk (Warren et al. 2001). The idea of moving species to sites where 

they currently do not occur is often cautioned against. Yet, with a thorough understanding of the 

habitat requirements of a species conservationists can identify low risk situations where the 

benefits of ‘assisted colonisation’ are maximised and the risks minimised (Hoegh-Guldberg et al. 

2008). Willis et al. (2009) introduced two species of butterfly into sites beyond their then 

respective range margins after using SDMs and local expert knowledge to identify potential new 

suitable habitats. Both introduced populations then proceeded to grow and expand across their new 

range over the following six years (and continue to prosper). With informed selection of both 

candidate species and suitable habitat, assisted colonisation can provide an effective mean of 

enabling species to track climate change. By modelling abundance, we can further enhance our 

understanding of species habitat requirements, improving the success of future assisted colonisation 

efforts. 

Predictions of abundance are a valuable resource for the implementation of effective 

management strategies. Knowing which species will become imperilled in future, and where 

climate change will most impact upon species’ abundance and communities, will be important for 

conservation planning. However, as I have discussed, the methods required to predict changes in 

abundance in response to projected climate change are, currently, largely untested. Furthermore, 

there is only limited understanding of what determines species abundance at a large scale. 

Establishing the relative importance of climate and land use in determining species abundance is 

important if we are to fully understand the potential impacts of future environmental change. Here, 

I present the key aims of this project, and describe how I intend to improve understanding of 

species abundance modelling, and the potential responses of species’ abundances to large scale 

environmental change.   
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1.7 Project Aims 

1. To assess the performance of  models of abundance 

First, I examine the improvements that can be made in models of species distributions, by 

conditioning them on abundance data rather than occurrence data. As detailed in section 1.5.2, 

the greater information available from abundance data may significantly improve our 

understanding of species-environment relationships. I assess whether such models can be used 

to produce informative spatial predictions of species abundance (Chapter 2). 

2. To understand what drives the abundance of European birds at a large scale 

Currently, our understanding of the relative importance of climate, land-use and other biotic 

factors in driving large scale abundance is limited, see section 1.4. Here, I investigate the 

relative importance of these factors in driving the abundance of European breeding birds. 

Initially, I focus on the European ranges of these species, and examine how the importance of 

these variables in determining the abundance of these species varies spatially (Chapter 3). I 

then extend these analyses to explore the relative importance of conditions on both the 

breeding and non-breeding ranges of European migratory birds (Chapter  4). With the reported 

impacts that conditions on non-breeding areas have in driving the populations of migratory 

species, see section 1.3.3, it is essential that we determine the importance of these factors 

relative to conditions on the breeding grounds. 

3. Assess the projected impacts of climate change on the abundance of European birds and 

the consequences for community structure 

Projections of species abundance are crucial for the effective conservation of species under 

climate change, see section 1.6. First, I assess the predictive power of spatial models of 

abundance, and determine their utility for predicting future changes in abundance (Chapter 5). 

Finally, using these models, I predict the potential effects of climate change on both the 

abundance of European breeding birds and the subsequent changes in community composition 

(Chapter 6).  
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Chapter 2  

Improving species distribution models: the value of data on abundance 

 

Now published as: Howard, C., Stephens, P.A., Pearce-Higgins, J.W., Gregory, R.D. & Willis, S.G. 

(2014) Improving species distribution models: the value of data on abundance. Methods in Ecology 

and Evolution, 5, 506-513 
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2.1  Abstract  

Species distribution models (SDMs) are important tools for forecasting the potential impacts of 

future environmental changes but debate remains over the most robust modelling approaches for 

making projections. Suggested improvements in SDMs vary from algorithmic development 

through to more mechanistic modelling approaches. Here, I focus on the improvements that can be 

gained by conditioning SDMs on more detailed data.  Specifically, I use breeding bird data from 

across Europe to compare the relative performances of SDMs trained on presence-absence data and 

those trained on abundance data. SDMs trained on presence-absence data, with a poor to slight fit 

according to Cohen’s kappa, show an average improvement in model performance of 0.32 (se 

±0.12)  when trained on abundance data. Even those species for which models trained on presence-

absence data are classified as good to excellent show a mean improvement in Cohen’s kappa score 

of 0.05 (se ±0.01)  when corresponding SDMs are trained on abundance data. This improved 

explanatory power is most pronounced for species of high prevalence. My results illustrate that 

even by using coarse scale abundance data, large improvements in our ability to predict species 

distributions can be achieved. Furthermore, predictions from abundance models provide a greater 

depth of information with regard to population dynamics than their presence-absence model 

counterparts. Currently, despite the existence of a wide variety of abundance data sets, species 

distribution modellers continue to rely almost exclusively on presence-absence data to train and test 

SDMs. Given my findings, I advocate that, where available, abundance data rather than presence-

absence data can be used to more accurately predict the ecological consequences of environmental 

change. Additionally, my findings highlight the importance of informative baseline data sets. I 

therefore recommend the move towards increased collection of abundance data, even if only coarse 

numerical scales of recording are possible. 
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2.2   Introduction 

To determine the impacts of future climate and habitat changes on species, ecologists increasingly 

use species distribution models (SDMs) to quantify species-environment relationships (Guisan & 

Thuiller 2005). SDMs are now widely used and frequently refined (Guisan & Rahbek 2011; 

Higgins, O'Hara & Römermann 2012). Nevertheless, confidence in the predictive power of these 

models continues to be undermined by conceptual, biotic and algorithmic flaws, which include 

uncertainty regarding variable selection (Austin & Van Niel 2011), unrealistic model assumptions 

(Schroder & Seppelt 2006; Dormann 2007b), and lack of agreement over the classification of basic 

concepts (Segurado & Araújo 2004; Araújo & Guisan 2006; Austin 2007). As a result, ongoing 

debate concerns the strengths and limitations of SDMs and potential areas for their improvement 

(Araujo & Peterson 2012). Suggested areas of development range from the incorporation of land 

cover variables and biotic interactions, to accounting for spatial autocorrelation (Guisan & Thuiller 

2005; Araújo & Guisan 2006; Dormann 2007a; Bagchi et al. 2013) and incorporating biological 

traits (Higgins, O'Hara & Römermann 2012). Methodological improvements may well increase the 

predictive performance of SDMs (Araújo & Guisan 2006; Austin 2007). Additionally, we might 

consider what could be achieved by improving the information available for training data sets. 

Although the relative value of presence-only and presence-absence data has been widely discussed 

(Brotons et al. 2004; Elith et al. 2006; Pearson et al. 2006), a third, more detailed form of data is 

available for many taxa in some regions: abundance data. This may either be an index of 

abundance, for example based on frequency of reporting rates (Harrison & Cherry 1997), or an 

estimate of true population size, such as derived from surveys accounting for detectability 

(Renwick et al. 2012). In addition to providing additional information that may be better related to 

conservation status (Gregory, Noble & Custance 2004; Johnston et al. 2013), extinction risk 

(O'Grady et al. 2004) and community structure and function (Davey et al. 2012), the greater 

information content of abundance data could also result in models with a greater ability to 

discriminate species’ range boundaries, and to produce more accurate models of presence-absence. 

At present, however, there is no indication of the magnitude of improvements in SDMs that could 

be gained through using abundance rather than presence-absence data.  

 Based on the assumption that local abundance is an indicator of habitat quality, SDMs 

derived from abundance data may reflect the importance of key demographic and environmental 

factors such as carrying capacity (Pearce & Ferrier 2001). Van Horne (1983) cautioned against the 

assumption that abundance can be used as an indicator of habitat quality, as some environmental 

factors and species characteristics, such as detectability, can reduce the probability of a positive 

correlation between abundance and habitat quality. Nevertheless, by using abundance data and 

increasing the information available to train SDMs, the ability to predict occurrence may be 
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improved. It is therefore important to understand the extent to which structuring presence-absence 

data through the use of abundance data improves model performance in cases where land cover and 

spatial autocorrelation have already been incorporated.  

A curvilinear relationship between predictive performance of SDMs and prevalence has 

been widely reported in the literature (Manel, Williams & Ormerod 2001; McPherson, Jetz & 

Rogers 2004; Allouche, Tsoar & Kadmon 2006), especially when fit is assessed using the kappa 

statistic (Santika 2011). A positive relationship between range size and mean abundance has also 

been reported within many taxonomic groups (Brown 1984). With this in mind, we would expect 

the mean abundance of low prevalence species to be uniformly low across their range, and 

therefore abundance values to be little more informative than presence-absence data. The predictive 

capabilities of models trained on abundance data and models trained using presence-absence data, 

may therefore be expected to converge at low levels of prevalence. 

Here, I use a machine learning technique, random forests, to model the distribution of 

European breeding-bird atlas data across the scale of the continent. I analyse the relative 

performance of models trained on abundance data and those trained on presence-absence data. 

Additionally, I investigate the role of prevalence on the performance of these models to determine 

if there are limitations to any benefit associated with abundance modelling. 

2.3   Methods 

2.3.1 Data 

Spatial abundance data for 496 species of breeding birds within Europe were obtained from the 

EBCC (European Bird Census Council) Atlas of European breeding birds (Hagemeijer & Blair 

1997). The EBCC atlas provides, for many countries across Europe, a population size estimate for 

each species in the ca. 50x50 km squares of the Universal Transverse Mercator (UTM) grid. 

Population size estimates, principally relating to the period 1985 -1988, are based on a 7-point 

scale (including zero and six logarithmically scaled categories: 1-9, 10-99, 100-999, 1000-9,999, 

10,000-99,999, ≥100,000 breeding pairs). For Russia, parts of Belarus, Ukraine, and the Caucasus 

republics, the data quality of species records was primarily qualitative; therefore, these areas were 

excluded from the analysis. Likewise, some areas in Western Europe recorded only qualitative 

presence-absence data, so were excluded from analyses (Figure A1).  From the initial 496 species, I 

excluded introduced species and species which spend a significant proportion of their time at sea 

(Table A1) because their abundance is unlikely to be strongly linked to terrestrial climate and land 

use. Due to model-building limitations, particularly when undertaking data-splitting for model 
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validation, those species recorded in fewer than 20 grid cells were also omitted. The remaining 345 

species were used for all subsequent analyses in this chapter 

2.3.2 Bioclimatic data 

Climatic data were derived from the global compilation made by New, Hulme and Jones (1999) for 

the 30 year interval 1961-1990, the latter part of which corresponds to the period of EBCC bird 

abundance data collection. Following the formulation of Prentice et al. (1992), four bioclimatic 

variables were calculated for each UTM grid cell: mean temperature of the coldest month (MTCO); 

mean temperature of the warmest month (MTWA); growing degree days above 5° (GDD5); and 

the annual ratio of actual to potential evapotranspiration (APET). Through both direct and indirect 

effects on vegetation, prey, predators, competition or diseases (Gregory et al. 2009), these variables 

can limit species ranges and populations. Previously, these variables have been widely and 

successfully used in models to describe both the range extents (Thuiller, Araujo & Lavorel 2004; 

Huntley et al. 2007; Oliver et al. 2012) and abundance patterns of European birds (Green et al. 

2008; Gregory et al. 2009).  

2.3.3 Land use data 

Land use data were compiled at the same resolution as the species data. The land use for each cell 

was derived from an aggregation of the Pan-European Land Cover (PELCOM) 1 km resolution 

database (Mucher et al. 2000); these land use classifications being based on NOAA-AVHRR 

satellite data. The PELCOM database was chosen over similar finer scale land use datasets due to 

its complete spatial coverage of the study area, and the homogeneity of the methods used for land-

cover classification (Thuiller, Araujo & Lavorel 2004; Araújo et al. 2005). Eight land use 

classifications were used: forest, grassland, urban, arable, wetland, coastal, shrubland, and barren. 

The percentage coverage of each of these eight classes was calculated for each UTM grid cell. 

2.3.4 Statistical modelling 

Random forest (RF) models were used to model species distributions from both the abundance and 

the presence-absence data. This machine learning technique is a bootstrap based classification and 

regression trees (CART) method (Cutler et al. 2007). Here, to account for a high degree of 

correlation between climatic covariates (with Pearson’s r ranging between 0.61 and 0.9) and the 

potential for biased variable selection, I use the ‘party’ package in R, which uses a random forest 

implementation based on a conditional inference framework (Hothorn, Hornik & Zeileis 2006a; 

Hothorn, Hornik & Zeileis 2006b; Strobl, Hothorn & Zeileis 2009a; R Development Core Team 

2012).  As with other classification methods, random forests draw bootstrap samples and a subset 

of predictors to construct multiple classification trees (Prasad, Iverson & Liaw 2006). The 
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classification trees find optimal binary splits in the selected covariates to partition the sample 

recursively into increasingly homogeneous areas with respect to the class variable (Cutler et al. 

2007). Under the conditional inference framework, unbiased variable selection is achieved by using 

a linear statistic to test the relationship between covariate and response, selecting the covariate with 

the minimum P-value. This linear statistic is also used to optimise the binary split into each 

homogeneous area (Hothorn, Hornik & Zeileis 2006a; Hothorn, Hornik & Zeileis 2006b; Strobl, 

Hothorn & Zeileis 2009a). In the case of ordinal response variables, a score vector reflecting the 

‘distances’ between class levels is combined linearly with the linear statistic altering both the 

selection and binary splitting of variables according to the scale of the ordinal response data 

(Hothorn, Hornik & Zeileis 2006b).  

Random forests make few assumptions about the distribution of variables, are robust to 

over-fitting, and are widely recognised to produce good predictive models (Breiman 2001a; Liaw 

& Wiener 2002; Prasad, Iverson & Liaw 2006). These models typically outperform traditional 

regression based approaches to species distribution modelling and are ideal for modelling 

categorical and ordinal data (Lawler et al. 2006; Magness, Huettmann & Morton 2008; Marmion et 

al. 2009).  More established approaches to ordinal data modelling include proportional odds and 

continuation ratio ordinal regression models (Guisan & Harrell 2000). However these models have 

limiting assumptions, such as parallelism between classes, and lack the flexibility to identify non-

linear, context dependent relationships amongst predictor variables (De'ath & Fabricius 2000; 

Olden, Lawler & Poff 2008; Strobl, Malley & Tutz 2009).  

To account for spatial autocorrelation I included a measure of the surrounding abundance 

of conspecifics in the first order neighbouring UTM grid cells (Segurado, Araujo & Kunin 2006) as 

a spatial auto-covariate (SAC). This term accounts for the greater degree of similarity between 

more proximate samples, that arises through distance-related biological process and spatially 

structured environmental processes (Dormann et al. 2007). I account for potential spatial 

autocorrelation in my abundance-based models by calculating an indicator of surrounding 

abundance for each UTM grid cell, using the following equation:  

          
 

 
  

 

 
     

         (1) 

where: L= surrounding local abundance, n= number of adjacent cells, A= categorical abundance, i= 

abundance category index. The log scaled abundance categories in the adjacent cells are back 

transformed to the mid-points of the relevant categories; these are averaged and re-transformed to 

the log scale. For models based on presence-absence data, the spatial autocovariate used the same 

equation, except that the abundance categories (Ai) were converted to binary (presence-absence) 

data. Models were fitted using ten-fold cross validation to reduce SAC between training and test 
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data and to minimise over-fitting. I used correlograms to compare autocorrelation in the model 

residuals with autocorrelation present in the raw data. Correlograms plot a measure of spatial 

autocorrelation, Moran’s I (Moran 1950), between grid cells as a function of the distance between 

them (Fortin & Dale. 2005; Dormann et al. 2007; Kissling & Carl 2008). A value of zero of 

Moran’s I for within model residuals, indicates an absence of spatial autocorrelation. Therefore, a 

significant deviation from zero suggests that the model is not adequately accounting for spatial 

autocorrelation (Dormann et al. 2007). Here, I note that all of my models showed substantial 

reductions in residual spatial autocorrelation when compared to that present in the raw data (see 

Figure 2.1). Species abundance and distribution modelling was carried out using the ‘party’  

package in R (Hothorn, Hornik & Zeileis 2006a; R Development Core Team 2012). 

 

Figure 2.1. Correlogram indicating the mean (shaded areas show standard deviation) of the 

correlgorams across all 345 species for raw data (black line) and for the residuals after model 

fitting (red line). 

Predictions of the probability of a species occurring at each abundance class were based on 

the number of votes for each class from the 1000 classifiers that comprised each forest (Robnik-

Sikonja 2004). Predicted probability across the abundance classes are summed to give a predicted 

probability of occurrence, whilst predicted ordinal abundances are based on the class with the 

majority vote. Ordinal predictions from the distribution model based on abundance data were 
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converted to presence-absence data to enable a direct comparison to recorded presence-absence 

data. 

 Model fits of simulated presence-absences derived from the abundance (after conversion 

to presence-absence data) and presence-absence models to observed presence-absence data were 

assessed using three methods, which included measures of both model calibration and 

discrimination. I used two measures of discrimination, which indicate the ability of a model to 

discriminate between species presence and absence. First, the kappa statistic measures model 

accuracy whilst correcting for accuracy expected to occur by chance (Cohen 1960); I used this on 

the simulated occurrences from the cross validated datasets. Kappa is the most widely used 

measure of discrimination and performance for presence-absence models (Manel, Williams & 

Ormerod 2001; Pearson, Dawson & Liu 2004; Segurado & Araújo 2004; Allouche, Tsoar & 

Kadmon 2006) but is criticised for being inherently dependent on prevalence and the often arbitrary 

choice of threshold value (Allouche, Tsoar & Kadmon 2006; Freeman & Moisen 2008). The 

second measure of discrimination, therefore, was a threshold independent measure of model 

performance, the area under the receiver operating characteristic (ROC) curve (AUC) (Manel, 

Williams & Ormerod 2001; Thuiller 2003; Brotons et al. 2004). 

As a measure of model calibration, I used calibration curves to assess agreement between 

the logits of the predicted probabilities and the observed proportions of occurrence in the test data 

(Zurell et al. 2009). The slope and intercept of this regression can provide a measure of model bias 

and spread (Pearce & Ferrier 2000). Model bias is the systematic over- or under- estimation of the 

probability of occurrence across the range of a species and results in an upwards or downwards 

shift of the regression line, causing the intercept to deviate from zero (Reineking & der 2006). The 

slope of the regression line, fitted to the predicted and observed values on x and y logit axes 

respectively, indicates the spread of the data. If predicted values lower than 0.5 overestimate the 

probability of occurrence whilst predicted values greater than 0.5 underestimate the probability of 

occurrence the slope of the regression line will be greater than one. Conversely a gradient of less 

than one indicates that predicted values lower than 0.5 are underestimating the probability of 

occurrence, whilst predicted values greater than 0.5 overestimate the probability of occurrence 

(Pearce & Ferrier 2000). A perfectly calibrated model will have an intercept of zero and a slope of 

one (Reineking & der 2006; Zurell et al. 2009; Vorpahl et al. 2012).  

I used a paired t-test on logit-transformed data to assess differences between the predictive 

performances, according to kappa, of models trained on each data set. The effect of prevalence (the 

proportion of presences out of 2813 cells) on predictive accuracy was assessed using a GAM, after 

controlling for species (to account for the paired nature of the data set). The model was fitted with a 



www.manaraa.com

30 
 

binomial error structure with a logit link and included species as a random effect, using the ‘mgcv’ 

package in R (Wood 2011; R Development Core Team 2012).  

2.4   Results 

Models trained on abundance data, and later converted to presence-absence predictions, were 

significantly more discriminating than models trained on presence-absence data (Figure 2.2a and b; 

paired t-tests, kappa t344=13.23, p<0.01, AUC t344= 3.72, p<0.01). Measures of model calibration 

also showed improved performance in the models trained on abundance data, when compared with 

models trained on presence-absence data. The measures of the intercept of the calibration curve 

were significantly different between the two models (t344= 3.88, p<0.01), with 74% of abundance 

models having an intercept closer to zero than their presence-absence trained counterpart. This 

significant difference is also true for the slope of the model calibration curves (t344= 3.33, p<0.01) 

with the slopes of the calibration curves from 76% of models showing a greater tendency towards 

one when trained with abundance data rather than presence-absence data. Furthermore, models 

trained on abundance data generally fitted the observed abundance data well with a mean weighted 

Cohen’s kappa score (Landis & Koch 1977) of  0.73 (se ± 0.01) (Figure 2.3). The magnitude of the 

improvement in model performance associated with abundance-trained models varied with the 

performance of the presence-absence data trained model (Figure 2.4). For presence-absence data 

trained models with a poor to slight rating kappa score (i.e. less than 0.2) (Landis & Koch 1977), 

mean kappa improved by 0.32 (se ± 0.12). Unsurprisingly, the magnitude of benefit declined with 

the fit of the original model, with minimal improvements among presence-absence data trained 

models that rated as almost perfect (i.e. with a kappa score greater than 0.8).  

Improvements in model accuracy resulting from the use of abundance data depended on 

the metric of model accuracy used. When that metric was kappa, improvements were most marked 

for models that had performed poorly when presence-absence data were used (Figure 2.4).  Poorer 

performing presence-absence models tended to be those associated with high or low prevalence 

species (Figure 2.5). Indeed, when kappa was used as the metric of model accuracy, a GAM 

showed that prevalence had a significant quadratic effect on model accuracy (z=2.55, p=0.01, 

z=1.38, p=0.17), and that the modelling method was also a significant categorical explanator 

(z=2.317, p=0.02). There was a marginally significant but weak interaction between prevalence and 

modelling method (z=0.18, p=0.85, z=2.02, p=0.04; Figure 2.5). By contrast, when AUC was used 

as the metric of model accuracy, improvements owing to the use of abundance data were unrelated 

to both prevalence and the fit of the equivalent presence-absence model.  
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Figure 2.2:  Measures of model performance for each form of training data. a) Cohen’s kappa, b) 

AUC, c) Intercept of the model calibration curve and d) slope of the model calibration curve 

(n=345). Notches indicate the 95% confidence intervals of the median, with a lack of overlap 

indicating a significant difference at the 5% level.  
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Figure 2.3: Abundance predictions from abundance data trained models. Bars represent the mean 

proportion of predictions for each abundance class averaged across all species. N values indicate 

number of observed cells within each abundance class.  
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Figure 2.4: Mean difference in Cohen’s kappa scores between abundance data trained and presence 

absence data trained models, Bins are based on the classification of the presence-absence data 

trained model according to Landis and Koch (1977). Positive values for differences in kappa score 

indicate an improvement in model fit, whilst negative values indicate a reduction in model fit. 
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Figure 2.5: Relationship between model accuracies, measured using Cohen’s kappa statistic, for 

models trained on abundance data and those trained on presence-absence data. Shaded areas 

represent 95% bootstrapped confidence intervals of the mean. 

2.5   Discussion  

Here I demonstrate the significant improvements in the accuracy of SDMs that can be achieved 

from using abundance data to train species distribution models. By including measures of 

abundance I derive a more accurate assessment of the relative suitability of habitats, thereby 

improving predictive performance. A lack of differentiation between low and high quality habitats 

may lead to model bias in the presence-absence trained models. For example, occurrences in low 

quality, wide-ranging habitats will outweigh records from high quality, scarce habitats. Due to the 

large number of observations, the relative importance of these low quality habitats will be over-

weighted in models trained on presence-absence data (Brotons et al. 2004).  
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I also show a hump-shaped relationship between species prevalence and model predictive 

accuracy. A variety of hypotheses on the causal factor behind this association already exist in the 

literature (Segurado & Araújo 2004; Allouche, Tsoar & Kadmon 2006; Santika 2011). Here, 

however, the interacting effects of method and prevalence on model performance are of greater 

interest. The marginal interaction shows that models built using abundance data generally 

outperform those built with presence-absence data, particularly for species with low prevalence. 

This contrasts with expectations based on the positive relationship between range size and local 

abundance (Brown 1984), which suggest that model performance would converge at low 

prevalence, owing to the relative lack of differentiation between presence-absence and abundance 

data (Brotons et al. 2004). 

These results suggest that models trained on abundance data are better able to identify the 

relative suitability of habitats than those trained on presence-absence data. The question naturally 

arises: what biological explanations could underlie this finding? The relationship between 

environmental suitability and abundance has been widely discussed (Pearce & Ferrier 2001; 

Nielsen et al. 2005). Indeed, VanDerWal et al. (2009) demonstrated that spatial patterns of 

abundance could be predicted using habitat suitability inferred from models based on presence-

absence data alone. Using models based on abundance data (rather than presence-absence data), the 

relative suitability of habitats can be modelled with even greater refinement. This is because 

information about the suitability of habitats is lost when treating all presences as equal, regardless 

of the abundance of individuals that the habitat supports. By considering abundance, presences - 

which are uninformative in presence-absence modelling - gain structure, improving the models’ 

ability to discriminate between fine scale differences in habitat quality. This could be particularly 

pronounced in situations in which the presence of a species is determined by habitat features that 

occur at a finer scale than that at which the model is fitted (Brotons et al. 2004). For instance, 

microclimates within a cell may render small patches of that cell suitable for low numbers of 

individuals, even where the mean climate of the cell is unsuitable; presence-absence data alone 

would suggest that the mean climate of that cell is as suitable as that of a cell with suitable climate 

throughout. Additionally this increased level of model refinement and ability to discriminate 

between finer scale differences in habitat quality may prove beneficial when using the model to 

project across alternative regions or time periods.  

My results suggest that even coarse scale abundance data can deliver large improvements 

in predicting spatial patterns of occurrence. With this in mind, why are spatial distribution 

modellers not driving the collection of abundance data? Gibbons et al. (2007), suggested that 

collecting abundance data for bird atlases is no more costly or resource demanding than collecting 

presence-absence data. Abundance data also provide valuable baselines against which to assess 

future changes (Cumming 2007). Changes in abundance will be much more rapidly apparent, and 
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hence more rapidly detected, than changes in presence-absence patterns across ranges (which are 

dependent upon colonisation and extinction events) (Gregory et al. 2005). Furthermore, categorical 

abundance data allow for the use of new and more informative modelling techniques such as 

density structured models and dynamic range modelling (Keith et al. 2008; Zurell et al. 2012; 

Mieszkowska et al. 2013). By integrating demographic data with range dynamics, these models 

aim to reduce bias in future range projections (Pagel & Schurr 2012; Schurr et al. 2012). 

Additionally, existing methods for modelling ordinal data, such as proportional odds models, are 

being improved by integration with boosting approaches. These algorithms improve prediction 

accuracy and avoid the overfitting problems associated with a maximum-likelihood approach 

(Schmid et al. 2011; Häring et al. 2013). By including population dynamics, dynamic SDMs allow 

for the temporal aspects of a species’ distribution to be investigated, including future abundance 

trends and species persistence. This in turn allows for a detailed assessment of the long term value 

of a site for species conservation. It is clear that not only can abundance data trained models predict 

the distribution of a species with a greater degree of accuracy, but that the information provided by 

these models is much richer than those predictions provided by distribution modelling.  

Currently, many global data sets already contain measures of the  local abundance of 

species (Robertson, Cumming & Erasmus 2010). Aside from periodic atlases, many of these 

provide annually repeated census data across a broad range of taxa including butterflies (Pollard & 

Yates 1994), birds (Sauer et al. 2012), vascular plants (Preston, Pearman & Dines 2002) ,and 

plankton (Barnard et al. 2004). Despite this array of data, species distribution modellers continue to 

use presence-absence data to train and test SDMs, choosing to focus on methodological 

development to enhance model performance (Guisan & Thuiller 2005; Araújo & Guisan 2006; 

Elith et al. 2006; Pearson et al. 2006; Higgins, O'Hara & Römermann 2012). To my knowledge, 

only two papers have attempted to use these abundance data to model species’ abundance at a large 

scale (Renwick et al. 2012; Johnston et al. 2013), yet here I show that relatively slight increases in 

the information content of a training data set (the change from binary presence-absence data to a 

log-scaled set of seven abundance categories) result in significant improvements in model 

performance. Given this improvement in model accuracy, combined with the creation of better 

baseline data sets, where existing abundance data are available, I advocate the use of abundance 

models as tools to predict the ecological consequences of environmental change. Where such data 

do not exist, I recommend that abundance data be collected alongside presence/absence data 

because, even if only relatively coarse numerical scales of recording are possible, the benefits are 

considerable.  
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Chapter 3 

The drivers of avian abundance: patterns in the relative importance of 

climate and land use 

 

Now published as Howard, C., Stephens, P.A., Pearce-Higgins, J.W., Gregory, R.D. & Willis, S.G. 

(2015) The drivers of avian abundance: patterns in the relative importance of climate and land use. 

Global Ecology and Biogeography, 24, 1249-1260.  
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3.1   Abstract  

Climate and land use can have important effects on the local abundances of species but few studies 

have investigated the relative impacts of these factors. Here, I quantify the relative importance of 

climate, land use and surrounding population size for determining the abundances of birds across a 

continent. I used species abundance models to identify the relative importance of different 

environmental predictors for estimating the local abundances of 342 species of European breeding 

birds. Models controlling for phylogeny were used to relate species’ life history and ecological 

traits to the ratio of climate to land use importance. The mean of this ratio, across all species 

occurring in a given area, was mapped to explore spatial variation in the major drivers of 

abundance. At the scale examined, climate is generally more important than land use for 

determining species’ abundances. However, the abundance of species in neighbouring areas is also 

a major correlate. Among climate variables, temperature is of greater importance than moisture 

availability in determining abundances. The relative importance of these variables varies with 

latitude, with temperature of greatest importance in the north, and moisture availability in the 

south. Differences in the importance of specific drivers are related to species’ ecological traits: 

climate is of greater importance for determining the abundance of species with larger global ranges 

or of smaller body mass.  Abundances of species occurring in northern Europe, an area predicted to 

experience climatic changes of high magnitude, are most sensitive to climate, particularly 

temperature. Given the greater confidence in future projections of temperature than precipitation, 

this increases confidence in projections of climate change impacts on species in the north, whilst 

attempts to predict future populations in central and southern Europe may be dependent on less 

predictable changes in land use and precipitation.  
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3.2   Introduction 

Climate change has been implicated as a major driver of recent variations in the distributions and 

abundances of birds (Green et al. 2008; Gregory et al. 2009; Illán et al. 2014). However, species’ 

responses to climate change are highly variable in both their magnitude and rate (Walther et al. 

2002). Understanding the relative effects of climate and concurrent land use changes on the 

population changes of species is challenging, yet vital to conserving species in future. Regional 

variations in the extent of recent land use changes are increasingly pronounced (Kaplan, Krumhardt 

& Zimmermann 2012) with, for example, large differences between eastern and western Europe 

(Donald, Green & Heath 2001). By contrast, the greatest recent changes in temperature have been 

observed towards the poles, a trend that is projected to continue through the current century 

(Stocker, Dahe & Plattner 2013). Regional disparities in expected climate change, and differential 

species responses to climate change, mean that it is important to understand the extent to which the 

abundances of species in different areas are driven by climate.  

Climate is often regarded as the primary, albeit indirect, driver of avian population 

dynamics (Thuiller, Araujo & Lavorel 2004). As a result, ecologists frequently use climate 

projections to predict, through species distribution modelling (SDM), the risks species face under 

particular climate change scenarios (Elith, Kearney & Phillips 2010). However, species that are 

affected by human activities are unlikely to be in equilibrium with climatic conditions (Thuiller, 

Araujo & Lavorel 2004), a pre-requisite for understanding species-climate relationships (Pearson & 

Dawson 2003). For example, the intensification of agricultural practices across Europe during the 

last quarter of the 20th century led to widespread changes in the abundance and distribution of 

many farmland bird populations (Donald, Green & Heath 2001). To account for such confounding 

issues, land use variables have been incorporated into SDMs and shown to improve their 

explanatory power significantly (Thuiller, Araujo & Lavorel 2004). However, few studies (but see 

Eglington and Pearce-Higgins (2012) and  Renwick et al. (2012)) have directly assessed the 

relative roles of climate and land use when modelling the abundance, rather than the distribution, of 

a species, and none has done so at a continental scale. Furthermore, the relative role of climate and 

land use may vary not only between species but also spatially. Beale, Brewer and Lennon (2014) 

demonstrated that the influence of climate on the distribution of a species varied across the species’ 

range. To understand the susceptibility of species to climate change, we must first disentangle the 

relative importance of climate and land use in determining abundance at a scale encompassing a 

large majority, if not the entirety, of a species’ range. 

The large-scale declines in the populations of some European birds (Inger et al. 2014; 

Vickery et al. 2014) are of growing concern, both in the scientific and political communities. 

Although specific regional declines (for example, those of farmland bird populations in Britain) 
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have been primarily attributed to agricultural intensification (Chamberlain et al. 2000; Donald, 

Green & Heath 2001), whether climate or land use is the primary driving factor behind large scale 

variations in populations of European birds is unclear (Thuiller, Araujo & Lavorel 2004; Green et 

al. 2008; Eglington & Pearce-Higgins 2012; Vickery et al. 2014). It has been suggested that a 

hierarchical scheme of environmental controls on species distributions exists, whereby climatic 

variables operate over the largest scale, with geology and land use determining species’ distribution 

at smaller scales (Thuiller, Araujo & Lavorel 2004). It has also been suggested that, by modelling 

abundance, we can distinguish finer scale variations in habitat quality that may not have been 

evident in distribution modelling (Chapter 1, Howard et al. 2014); this might enable more accurate 

assessments of the relative importance of land use and climate for species at a continental scale.  

Here, I assess the relative roles of climate and land use in determining the local abundance 

of breeding-birds across Europe. I examine whether the relative contribution of climate and land 

use varies among species in relation to ecological traits. My working hypothesis, following 

previous research (Barbet-Massin, Thuiller & Jiguet 2012; Virkkala & Lehikoinen 2014) on 

determinants of the ecological niche is that climatic influences will dominate at poleward regions in 

Europe and that land use will be more important in determining abundance patterns in the more 

heterogeneous landscapes of central and southern Europe. Specific traits, such as mass and range 

size (Angert et al. 2011; Buckley & Kingsolver 2012) have been linked to the characteristics of 

species’ climatic niches. For example, larger bodied, and wider ranging species occur more 

frequently in colder climes (Ashton 2002). Based on energy conservatism in endotherms, I might 

expect large bodied organisms to be less closely tied to climate than would smaller species (due to 

surface area: volume ratios). Species-specific traits including breeding range size and migratory 

distance have also been linked to habitat specialisation (Reif et al. 2015). Our goal here is to 

identify those traits that indicate whether a species is most likely to be sensitive to climate change 

impacts (those whose abundance is most strongly related to climatic variation) or habitat 

modification (those whose abundance is most strongly related to land use). In addition, I investigate 

spatial patterns in the role of different drivers of abundance, identifying those areas of Europe in 

which birds are likely to be more susceptible to climatic or land use change. Given that species’ 

northern range limits are often thought to be determined by their thermal tolerances (Woodward 

1987; Addo-Bediako, Chown & Gaston 2000), I might predict that climate will be of greater 

importance at higher latitudes.  
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3.3   Methods 

3.3.1 Species data 

Species data are as indicated in Chapter 2. For these analyses I also excluded three addition species 

due to model building limitations and model convergence failure. The remaining 342 species were 

used for all subsequent analyses in this chapter. 

3.3.2 Bioclimatic data 

Bioclimate data are as indicated in Chapter 2 but in this case only three bioclimatic variables were 

calculated for each UTM grid cell: mean temperature of the coldest month (MTCO); growing 

degree days above 5° (GDD5); and the annual ratio of actual to potential evapotranspiration 

(APET). This was to further reduce the potential of correlated predictor variables to influence the 

outcome of these results. 

3.3.3 Land use data 

Land use data are as indicated in Chapter 2.  

3.3.4 Surrounding local abundance 

Spatial autocorrelation was accounted for in these analyses through the calculation of a spatial 

autocovariate term, using equation 1, as indicated in Chapter 2. Here, I note that, in those cases 

where neighbouring cells included marine habitats, the categorical abundance was included in 

equation 1 as a zero (alternatively, including these cells as missing data had no impact on our 

findings, Figure A2). I included information only from neighbouring cells immediately adjacent to 

the focal cell (i.e. first-order neighbours (Dormann et al. 2007); higher orders of neighbouring cells 

were considered, but model fit was best when only first-order neighbours were included (Figure 

A3). 

3.3.5  Statistical analyses 

Random forests (RF) were used to model species’ abundance and to provide estimates for the 

relative importance of predictor variables. This machine learning technique is a bootstrap-based 

classification and regression tree (CART) method (Cutler et al. 2007). Robust to over fitting, it is 

widely recognised to produce good predictive models; hence, it is increasingly applied to species 

distribution modelling (Cutler et al. 2007).  

Models were fitted using ten-fold cross validation to reduce SAC between training and test 

data and to minimise over-fitting. To improve stability, each model was built using 1000 
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classification trees fitted to a random sample of the observations (approximately 63% of the 

available data). The remaining ‘out-of-bag’ observations (OOB; a term used with RF models to 

describe the semi-independent test data not used initially for model fitting) were then cross 

validated against the resulting trees to estimate model performance (Cutler et al. 2007) using a 

threshold independent measure of model performance, AUC, the area under the receiver operating 

characteristic (ROC) curve (Manel, Williams & Ormerod 2001). Previous evaluation has shown 

that these models perform well when assessed using other measures of model discrimination and 

calibration, in addition to AUC (Chapter 2, Howard et al. 2014). These previous analyses also 

demonstrated that RF models substantially reduced residual SAC relative to that present in the raw 

data. 

Individual variable importance was calculated using a permutation-based measure of the 

normalised difference in prediction accuracy for the OOB data when the predictor variable is 

included as originally observed, versus when the predictor variable is randomly permuted.  Higher 

values of AUC indicate a greater degree of association between the variable and response (Cutler et 

al. 2007). To account for potential correlations among predictor variables, a conditional 

permutation approach, proposed by Strobl et al. (2008), was applied using the ‘party’ package in R 

(Liaw & Wiener 2002; R Development Core Team 2012). Using this approach, the underlying 

correlation structure is preserved by permuting the predictor variable only within groups of 

observations. This method provides a fair means of comparison, identifying the relevant predictors 

and mostly eliminating the preference for correlated variables (Strobl et al. 2008). To enable 

comparisons between species, relative variable importance was calculated by dividing each 

individual variable importance by the summed importance across all variables for each species. 

Relative variable importance for each species was aggregated for each of the two broad categories 

of driver: climate and land use (Ishwaran 2007). The aggregated importance of climate variables 

was then divided by the aggregated importance of land use variables. This ratio was taken to give a 

measure of the relative importance of climate and land use for each species (Table A2). 

A phylogenetic generalised least squares (PGLS) approach was used to test both for 

relationships between species-specific traits and the relative importance of climate to land use 

(hereafter termed ‘relative climate importance’) and for relationships between species-specific 

traits and the importance of spatial autocorrelation for a species, whilst controlling for phylogenetic 

non-independence (Freckleton 2009). Species’ traits were taken from BirdLife International (2013) 

and included mean body mass, generation length, primary habitat association, migratory strategy, 

and average and maximum natal dispersal distances. Global range size, a measure of the 

geographic scale over which the drivers of abundance operate, was also included, and was derived 

from BirdLife International species range polygons (BirdLife International & NatureServe 2012). 

Prevalence within the study area, which represents the quantity of available data, was calculated as 



www.manaraa.com

43 
 

the proportion of UTM squares that were occupied (from Hagemeijer & Blair 1997). Phylogeny 

was based on a consensus tree built using 5,000 trees sub-sampled from the global phylogeny built 

by Jetz et al. (2012). I compared the AIC corrected for small sample size (AICc) for all subsets of 

the global model, selecting all models within 6 ΔAICc of the best performing model. To avoid 

selection of overly complex models, all models with a better-performing simpler nested model 

were disregarded (Richards 2008). Diagnostic plots were examined for the final model for each 

analysis to check for heteroscedasticity, non-normal errors and outliers. Phylogenetic analyses were 

carried out in the ‘caper’ package in R (Orme et al. 2012; R Development Core Team 2012). 

Spatial variation in relative variable importance was investigated by calculating the mean 

ratio of climate and land use importance for all species present within a UTM grid cell. This was 

applied to all cells where more than 75% of the species present were represented by quantitative 

data (Figure A1). In total, this accounted for 47.5 % of the UTM grid cells across Europe. As I 

found little variation in the performance of models for species located in different parts of Europe, 

these ratios were not corrected for model fit. To test for spatial variation in these ratios, an ordinary 

least squares regression (OLS) was used to examine the relationship between the mean ratio of 

climate to land use importance for all species present in a UTM grid cell against the latitude and 

longitude of the cell. Species richness and heterogeneity of land use (the latter measured using 

Shannon’s diversity index (Forman 1995) within each UTM grid cell were also included in these 

OLS models and an ANOVA used to identify differences in the explanatory power of variables.  

3.4  Results 

3.4.1  The relative importance of abundance drivers 

Random forest models of the abundance of the 342 species of European breeding bird generally 

performed well, with a mean AUC score of 0.97 (S.E.± 0.001). An ANOVA comparing the relative 

importance of the two aggregated variable types (climate and land use) and the spatial 

autocovariate term across the species models, whilst controlling for species as a random effect, 

showed an overall significant difference between the three variable-types (F2,1023=4442, p<0.01, 

Figure 3.1a). Specifically, despite the models including more land use variables than climate 

variables and only one SAC term, Tukey’s post-hoc analysis revealed that climate was significantly 

more important than land use (p=0.05) in explaining abundance of species. Further, the importance 

of each of the climate variables in isolation was greater than any of the land use variables. Perhaps 

unsurprisingly, given the spatial coherence of most species’ distributions, the SAC term appeared 

significantly more important than both climate and land use (p<0.01). 
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Figure 3.1: Mean relative importance (± se) of climatic and land use variables along with spatial 

autocorrelation for 342 species in determining species local abundance, for both aggregated 

variables (A) and individual variables (B). Notches indicate the 95% confidence intervals of the 

median, with a lack of overlap indicating a significant difference at the 5% level. Circles indicate 

outliers.  

 

There were also significant differences in the relative importance of individual variables 

among species (F(11,341)= 168.4, p<0.01; Figure 3.1b). In general, within the climatic variables, 

temperature variables have a much greater impact on species’ abundances than moisture 

availability. Both GDD5 and MTCO were significantly more important than APET (Tukey’s post-

hoc analysis, p<0.01 for both). The importance of individual land use variables in modelling 

abundances also differed significantly. In addition, the prevalence of a land use type across Europe 

was positively correlated with the mean relative importance of that variable (R
2
 =0.89) in the 

models of species abundance. For example forest, arable, coastal and inland wetland land uses were 
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all significantly more related to species’ abundances than the grassland, urban, shrubland and 

barren land uses (Tukey’s post-hoc analysis, p≤ 0.05 for each comparison). The most important 

land use variables for a species were those directly related to its primary habitat association (e.g. 

arable land coverage was the most important variable determining the abundance of farmland 

species) (Figure A4).  

3.4.2  Between species variation in relative variable importance 

When testing the relationship between the ratio of the relative importance of climate versus land 

use variables for species and species-specific traits, a PGLS model retained four variables. These 

were: a species’ primary habitat association, its global range size, its log body mass, and its 

prevalence across Europe (Table 3.1). This model explained 18% of the observed variance in 

relative climatic importance. A highly significant positive relationship was found between global 

range size and the relative climatic importance, whilst body mass and prevalence were significant 

negative covariates. The relative importance of climate appeared to be unaffected by primary 

habitat association, with the exception of coastal species, for which climate was less important than 

for other species (Table 3.1). 

 A PGLS model testing relationships between the importance of SAC for each species and 

species-specific traits retained only primary habitat association and log body mass. A highly 

significant negative relationship was found between body mass and the importance of SAC, whilst 

SAC was less important for species associated with Mediterranean or tundra and moorland habitats 

than for species with other primary habitat associations (Table A3).   
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Table 3.1:  Species traits and the relative importance of climate and land use. Estimated 

coefficients for AIC selected phylogenetically corrected GLS regression models for the ratio of the 

relative importance of climatic and land use variables in determining the abundance of a species. P-

Values significant at the 5% level are shown in bold. 

  

Effect 

size 

Standard 

error t- value P-value 

Intercept (Habitat generalists) 0.66 1.15 0.58 0.57 

Primary Habitat association: 

                  1. Coastal -0.95 0.31 -3.09 <0.01 

              2. Inland Wetland -0.22 0.18 -1.22 0.22 

              3. Tundra, mires and moorland 0.01 0.22 0.06 0.95 

              4. Boreal and temperate forest 0.32 0.18 1.78 0.08 

              5. Mediterranean 0.48 0.34 1.41 0.16 

              6. Agriculture and grassland -0.06 0.18 -0.33 0.74 

              7.Montane grasslands -0.35 0.38 -0.92 0.36 

Log (Body mass) -0.17 0.07 -2.34 0.02 

 Prevalence across Europe -1.61 0.27 -5.98 <0.01 

Log (Global range size) 0.23 0.06 3.56 <0.01 

Lambda: 1 

Residual standard error: 0.509 on 265 degrees of freedom 

Adjusted R-squared: 0.173 

 

3.4.3  Spatial patterns in the importance of climate and land use 

There are clear spatial patterns in relative climatic importance across Europe (Figure 3.2). A 

regression analysis revealed a significant positive relationship between the mean relative climatic 

importance for all species present in a UTM grid cell and the latitude of that cell (F1,1716=2585, 

p<0.01); this indicates that the relative importance of climate for determining the abundance of 

species increases from southern to northern Europe. Significant relationships were also identified 

between mean relative climatic importance of a UTM grid cell and the longitude, species richness, 

and land use heterogeneity of that cell. However, the proportion of variance explained by these 

variables was low (1.20 %, 2.37 %, 0.76 %, respectively), particularly when compared with the 

proportion of variance explained by latitude (57.50 %, Table A4). Spatial patterning is also evident 

in the relative importance of individual climatic variables (e.g., see the contrast between a 

temperature and a moisture related variable; Figure 3.3). There were significant positive 

relationships between relative importance of both temperature-related variables and latitude 

(regression of the mean importance of an individual climate variable across all species present in a 

UTM grid cell against latitude: GDD5, F1,1716=7118, p<0.01; and MTCO, F1,1716=11353, p<0.01, 
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Figure 3.3a and b, Table A4). Conversely, the relative importance of APET in explaining 

abundance declined with latitude (regression [as above]: F1,1716=3618, p<0.01, Figure 3.3c, Table 

A4).  

 

 

Figure 3.2: Spatial distribution of the ratio of the relative importance of climate to land use for 

determining the abundance of European bird species present within each UTM grid cell. Grey 

regions indicate areas omitted from analysis due to paucity of quantitative data – see methods.  
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Figure 3.3: Spatial distribution of relative importance for determining the abundance of European 

birds of measures of: a) Mean temperature of the coldest month (MTCO); b) Growing degree days 

above 5° (GDD5); and c) Actual to Potential Evapotranspiration Ratio (APET). Grey regions 

indicate areas omitted from analysis due to paucity of quantitative data – see methods. Note 

different scales for each plot.  
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3.5  Discussion  

At the spatial scale examined, the abundances of the vast majority of terrestrial European birds are 

more strongly influenced by climate than by land use. I have demonstrated, for the first time, 

substantial spatial variation in the relative importance of factors driving local abundance. I now 

discuss these results in light of three key findings: (1) the substantial differences between land use, 

climate and neighbouring abundance in their relative importance for determining local species 

abundance; (2) the strong spatial patterns in variable importance; and (3) the specific traits that 

predispose a species to the influence of either climate or land use.   

3.5.1  Differences in the relative importance of climate, land use and spatial autocorrelation 

There is substantial evidence for the individual impacts that changes in both climate and land use 

have on European bird populations (Lemoine et al. 2007; Vickery et al. 2014), and conflicting 

opinions about which is the most important factor affecting avian populations (Thuiller, Araujo & 

Lavorel 2004; Vickery et al. 2014). Here, despite evidence of variation in their importance among 

species and across space, I have show that climate is usually more influential than land use in 

driving abundance patterns within a species’ range. Previous studies (Thuiller, Araujo & Lavorel 

2004) suggested that climate is a better predictor of range extent than land use but here, for the first 

time, I demonstrate that, within a species’ range, climate is also the dominant factor in determining 

abundance patterns at this larger, landscape scale.  

Species’ distributions are thought to be determined by a hierarchical scheme of 

environmental controls, with climatic variables operating over the largest range, and factors such as 

land use, geology and topography operating at increasingly finer scales (Thuiller, Araujo & Lavorel 

2004). This hierarchy may also operate on abundance, favouring a greater importance of climate 

than land use at a coarse spatial scale. Despite this, I have also shown the importance of land use 

variables independent of the variability described by climate. Widespread land uses, whose 

occurrence may not be closely tied to local climate, such as arable land, forestry and inland 

wetlands, were important determinants of abundance patterns. Surprisingly, I have also identified 

more localised land use variables, such as shrubland and urban environments, as important 

predictors of the abundance of some species. This contrasts with previous studies investigating the 

perceived role of land use variables on range extent (Thuiller, Araujo & Lavorel 2004), where the 

importance of more localised land use variables was less evident. One explanation for this 

difference may lie in the difference between presence-absence models (as used by Thuiller et al. 

2004) and these abundance models. Specifically, by considering abundance, these models can 

reflect finer scale differences in habitat quality than can presence-absence models (Howard et al. 

2014). Abundance models might, thus, expose finer scale species-habitat relationships than those 
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detected by presence-absence modelling. However, this does not mean that climate and/or land use 

models are sufficient to explain spatial variations in abundance patterns for all species.  

By using a conditional inference framework and permutation based approach to assess 

variable importance, I have also shown that the majority of spatial variation in species’ abundance 

can be related to the abundance of the same species in neighbouring cells. This term partly reflects 

the degree of the spatial aggregations in climate and land use, as well as in the bird abundance data 

itself. This could result in estimates of the importance of climate and land use being more 

conservative than if SAC had not been accounted for. Also incorporated in this term are the effects 

of unknown spatial processes, such as biotic interactions. The apparent importance of SAC 

suggests that species’ dispersal abilities may be an important factor in determining local 

abundance, which may in turn indicate potential difficulties in establishing new breeding areas 

separated from current distributions (Tilman & Kareiva 1997; Dormann et al. 2007). My finding 

that this variable can, in some instances, explain 70% or more of the spatial variation in abundance 

of a species indicates the importance of accounting for spatial autocorrelation when modelling 

abundance (Segurado, Araujo & Kunin 2006). Techniques such as hierarchical partitioning can 

help to understand the extent to which some of the variation in SAC is related to spatial patterning 

in the other predictor variables but this approach cannot be applied to random forest models. 

When climate variables are considered individually, my results indicate that temperature-

related variables are of much greater importance than moisture availability in determining 

abundances across Europe. This is important, as the highest degree of predictive uncertainty for 

future climates occurs for precipitation forecasting (Theis, Hense & Damrath 2005). With the 

exception of the Mediterranean region, where precipitation is shown to be an important determinant 

of abundance, my results suggest that uncertainty around precipitation forecasts may affect future 

projections of European species range extents to a much lesser extent than currently expected and, 

thus, that projections of future climate suitability for most species may be more reliable than 

currently supposed. 

3.5.2  Spatial variance in the role of land use and climate in determining abundances  

Spatial patterns in the relative importance of climate and land use indicate that the abundances of 

species that occur in the higher latitudes of Europe are more strongly dictated by climate variables. 

Despite the correlative nature of the models, their high predictive ability on spatially independent 

data indicates that our findings are robust. These results, therefore, could have important 

ramifications with regard to future climate change.  Future changes in climate are projected to be 

greatest in more northerly latitudes of Europe (Virkkala et al. 2008; Stocker, Dahe & Plattner 

2013), and in a direction unfavourable to most northerly species (Huntley et al. 2007). Whilst the 
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past is not necessarily a good predictor of the future, bioclimate models have been shown to have 

some power in predicting future population changes (Green et al. 2008; Gregory et al. 2008). The 

strong dependency on climate of avian abundance in these areas means that constituent species will 

not only be exposed to some of the strongest climate changes in future but also that their 

populations are among the most sensitive to such changes.  Previous studies have identified that 

boreal and Arctic species are vulnerable to climate change as a result of projected future declines in 

range size (Virkkala et al. 2008). Given, in addition, that the abundances of these species are 

particularly strongly related to climatic factors, all other things being equal, populations are likely 

to be subject to more substantial declines than currently anticipated from considerations of range 

extent alone.  

The relative importance of individual climatic variables also shows spatial patterns, with 

temperature related variables more important in the north, and moisture availability more important 

in the south. These findings are in line with the water-energy hypothesis, in which the key factor 

determining richness variation switches from moisture availability at the equator to energy related 

variables towards the poles (Hawkins et al. 2003; Whittaker, Nogués-Bravo & Araújo 2007), and 

match latitudinal gradients in the temporal variation in bird populations to both temperature and 

precipitation (Pearce-Higgins & Green 2014). In those areas where energy inputs are low, such as 

at higher latitudes, temperature constrains species richness and abundance (Brown & Maurer 

1989); by contrast, where temperatures (and hence energy input) are higher, moisture availability 

constrains richness and abundance (Hawkins et al. 2003).  

The importance of land use in determining abundance is more evident for species present 

in the southern regions of Europe. In this context, there are parallels with the apparent climate 

sensitivity of more northerly species discussed above. Specifically, the future impacts of land use 

change in Southern Europe may be compounded by the prevalence of land use specialists (as 

defined by Moreira and Russo (2007)) in these regions. The Mediterranean regions where such 

species are principally located are also the regions where land use change is likely to be greatest in 

future (Jetz, Wilcove & Dobson 2007), potentially accelerating rates of population change. 

Some countries wholly (Norway and Poland), mostly (Spain), or partly (Italy, France and 

Iceland), did not provide quantitative spatial estimates of species abundance for the EBCC atlas 

(Hagemeijer & Blair 1997). This includes some southern regions that are highly heterogeneous in 

both land use and temperature (Sanderson et al. 2002; Barnagaud et al. 2012). Whilst it is possible 

that a paucity of data in these areas may bias the importance of variables towards those regions 

where data is more fully represented, for example middle and northern Europe, given that we were 

able to incorporate data from Iberia, southern France, Italy and Greece in the south, and Scotland, 

Iceland, Sweden and Finland in the north, the full range of variation across both climate and land 
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use is adequately represented in the data. Looking forward, several countries omitted from my 

analyses have subsequently initiated standardised population monitoring (PECBMS 2009), 

providing the potential for future analyses to be applied to the entire region. As with all correlative 

modelling, the predictive ability of these models may not extend to novel regions of parameter 

space. For example, the introduction of novel land uses to an area could, through a novel 

combination of climate and land use variables, create a previously unmodelled habitat niche. This 

is particularly the case for those land uses governed by anthropogenic factors (rather than climatic 

variables), such as arable or urban land use, which, if introduced to novel regions of northern 

Europe, could create novel conditions.  

3.5.3  Species characteristics and the drivers of abundance 

A range of ecological characteristics, such as body mass, range size, and gene frequency have all 

been linked to the climate sensitivity of species (Buckley & Kingsolver 2012; Parmesan et al. 

2013). My results provide further evidence for trait-climate relationships. First, my analyses 

identify a negative relationship between body mass and the importance of climate. This is perhaps 

unsurprising, given the lower surface area to volume ratio of larger bodied organisms, which 

renders them less susceptible to climate (Peters 1986). Second, I show a negative relationship 

between prevalence of a species across Europe and the importance of climate. This is consistent 

with the idea that an extensive prevalence indicates that a species is adapted to a wide range of 

climatic conditions (and vice versa) (Addo-Bediako, Chown & Gaston 2000; Ohlemuller et al. 

2008). Although there are good reasons to expect negative relationships between climatic 

importance and both body mass and prevalence, attributing causal relationships is vexed in this 

case.  This results from the positive association between body mass and prevalence, as well as the 

fact that both of these traits are known to increase with increasing latitude (Brown & Maurer 1989). 

3.5.4  Conclusions 

Here, I present a first comprehensive analysis of the factors determining spatial variation in 

abundance of a continental avifauna. I compare the relative importance of climate and land use 

variables in determining the abundance of species, taking into account the importance of spatial 

autocorrelation. Overall, the importance of climate variables outweighs that of land use in 

determining species abundances; furthermore, across Europe, the importance of variables related to 

temperature outweighs those related to moisture, increasing my confidence in projections of the 

impact of future climate change on European bird species. Spatial variation in relative variable 

importance shows that climate variables are particularly important for those species present in 

northern Europe. This knowledge, combined with predictions of high magnitude climatic changes 
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in these areas, indicates that northern bird species in Europe are likely to be amongst those most 

vulnerable to future climate change impacts on their populations. 
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Chapter 4 

Breeding ground climate drives population trends in migratory birds 
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4.1  Abstract 

Global declines in the populations of migrant species have been attributed to both climate and 

anthropogenic habitat change. However, the relative contribution of these factors on species’ 

breeding and non-breeding ranges is contentious and has not been satisfactorily addressed. Here, I 

assess the roles of changes in climate suitability across the breeding and non-breeding ranges, and 

species’ habitat affinities, on the long term population trends of 51 short- and 36 long-distance 

migratory species of European breeding birds. I demonstrate that the population trends of migratory 

birds are more closely related to climate on their breeding grounds than climate on their non-

breeding grounds. I also show that across both breeding and non-breeding grounds, species with 

similar habitat preferences underwent similar population trends over the last 31 years. Whilst 

improvements in climate suitability across the breeding ranges of short-distance migrants led to 

increases in population trends, the same was not true for long-distance migrants. Overall, the 

population trends of short-distance migrants can be better explained than those of long-distance 

migrants, suggesting that additional factors are impacting upon long-distance migrants. 

Importantly, my results suggest that the combined effects of climate change and habitat-specific 

drivers on the breeding grounds account for half of the variation in population trend across 

European migratory species. 
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4.2  Introduction 

Increasingly, climate change is implicated in an emerging global trend whereby migratory species 

are experiencing more rapid rates of population decline than their resident counterparts (Wilcove & 

Wikelski 2008; Finch et al. 2014).  With more than 12% of the world’s vertebrates making long-

distance movements (Runge et al. 2014), the decline of migrant species poses a serious threat to 

global biodiversity and associated ecosystem services, and is of scientific and political concern 

(Vickery et al. 2014). Understanding the cause of these declines is complicated by the dependence 

of migrants on a large number of habitats, including their breeding and non-breeding grounds, as 

well as stop-over sites (Sillett & Holmes 2002; Robinson et al. 2009; Newton 2010). Susceptibility 

to environmental change in any of these habitats renders migrants more vulnerable to the pressures 

of anthropogenic habitat change than their resident counterparts (Finch et al. 2014; Runge et al. 

2014). Additionally, the need to understand in which of the various staging and residence areas the 

population is crucially limited, further complicates the elucidation of drivers of population change 

(Ockendon et al. 2012). Both climatic change and anthropogenic induced habitat change have been 

identified as potentially limiting factors, with increased persecution and hunting also affecting 

populations (Vickery et al. 2014). 

Afro-Palaearctic long-distance migratory birds, which breed across Europe and spend the 

non-breeding season in sub-Saharan Africa, are declining significantly faster than European-

breeding resident and short-distance migrant birds (Sanderson et al. 2006; Cresswell 2014; Vickery 

et al. 2014) (Figure 4.1). Many of the former species have shown continent-wide patterns of 

sustained, often severe, decline since circa 1970. By contrast, their resident counterparts have 

generally undergone little or no decline at all during the same period (Sanderson et al. 2006; 

PECBMS 2009; EBCC 2013). The causes of these declines in long-distance migrants are likely to 

be both population- and species-specific, but with the trend observed across multiple species and 

multiple breeding populations, changing conditions on the African non-breeding grounds are a 

putative cause (Sanderson et al. 2006; Cresswell 2014). Due to detailed monitoring in temperate 

Europe (Ockendon et al. 2012) there is a clear understanding of how both European climate and 

anthropogenic land use affect breeding birds (Newton 2004b; Gregory et al. 2007; Thaxter et al. 

2010), and climate trends in Europe have been related to long term variations in population sizes 

(Green et al. 2008; Gregory et al. 2009). There is also some understanding of the role of climate on 

species non-breeding ranges, with both annual fluctuations and long-term trends in migratory bird 

populations linked to changes in rainfall patterns, for example in the Sahel (Lemoine & Bohning-

Gaese 2003; Zwarts & van Horssen 2009; Both et al. 2010; Ockendon, Johnston & Baillie 2014; 

Pearce-Higgins et al. 2015). In addition, although the role of land-use change on the breeding 

grounds has been shown to be an important driver of population change in some species (Donald et 
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al. 2006; Sanderson et al. 2006), little is currently know about the role of land-use impacts on the 

non-breeding grounds (Wilson & Cresswell 2006; Cresswell et al. 2007). The effects of land use, 

however, are most evident at finer scales, whereas the effects of climate are most apparent across 

larger areas; climate has been suggested to be the major driver of the distribution and abundance of 

birds across Europe (Thuiller, Araujo & Lavorel 2004; Chapter 3: Howard et al. 2015). Uncertainty 

remains about the relative role of long-term trends in climatic conditions and habitat on the 

breeding versus non-breeding grounds on the population trends of European long-distance migrants 

(Ockendon et al. 2012; Vickery et al. 2014). 

Here, I explore, for the first time, the role of long term trends in climate suitability on both 

breeding and non-breeding grounds in driving the population sizes of European breeding birds with 

different migratory strategies and habitat affinities. First, I model the breeding and non-breeding 

distributions of these birds at a continental scale in relation to long-term mean climate data. I then 

apply these models to annual climate data to project trends in climate suitability for individual 

species, across their breeding and non-breeding ranges. In order to determine the extent by which 

trends in breeding bird population sizes across Europe are directly attributable to climatic change, 

we analyse the relationship between these climate suitability trends (CST) and long term 

population trends. Within this analysis, I control for species’ habitat affinities, as different trends 

between groups may indicate that land use is an important driver of population sizes. Although 

incorporating measures of land-use change would be preferable to explore the impacts of habitat, 

these data are not available for both breeding and non-breeding ranges for the time period of 

interest. I explore how climatic conditions, on both the breeding and non-breeding grounds, and 

long-term population trends differ among species of different migratory strategies, in order to 

understand the different drivers of population changes between long- and short-distance migrants. 



www.manaraa.com

58 
 

 

Figure 4.1: Annual percentage change in the population size of 107 common breeding birds across 

Europe between 1980-2011, separated into resident species (n=20), and short-distance (n=51) and 

long-distance (or ‘Afro-Palaearctic’, n=36) migratory species. Notches indicate the 95% confidence 

intervals of the median, with a lack of overlap indicating a significant difference at the 5% level. 

Box boundaries show the interquartile range, whilst the line across the box indicates the median. 

Whiskers identify extreme data points that are no more than 1.5 times the interquartile range on 

both sides and dots indicate points outlying this range. Population data come from the Pan-

European Common Bird Monitoring Scheme (PECBMS, http://www.ebcc.info/pecbm.html). 

4.3  Methods 

4.3.1  Species data 

Population trend data for 93 species of European migratory breeding birds were available from the 

Pan-European Common Bird Monitoring Scheme (PECBMS, http://www.ebcc.info/pecbm.html) 

for the period 1980 to 2011. Five of these 93 species were excluded from my analyses as 

population trend data for these species were only available from 1990. I removed an additional 
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species (Upupa epops) from the analysis due to uncertainty regarding the overall direction of the 

population trend (high standard errors for the PECBMS trend).  This left 87 migratory species with 

long-term population trend data calculated from monitoring data from across 20 European 

countries (Table A5 and A6). Supranational trends were calculated using log-linear Poisson 

regression in the software package TRIM (TRends and Indices for Monitoring data) (Pannekoek & 

van Strien 2001; Gregory et al. 2005). Specifically, the regression coefficient obtained by 

regressing the annual species counts across the 20 countries on calendar year is what I refer to as 

the population trend. Species were classified into two groups according to their migratory strategy: 

(1) short-distance migrants, which migrate principally to novel areas of Europe and North Africa in 

the non-breeding season; (2) and long distance migrants, which spend the non-breeding season 

entirely in sub-Saharan Africa (see Table A6 for classifications).  

Species’ range extent data (used to fit species distribution models (SDMs) – see below) 

were obtained from BirdLife International (BirdLife International & NatureServe 2012) for the 87 

species, available as separate breeding and non-breeding ranges for each species. The distribution 

maps of each species’ breeding range were overlaid with a 0.5° x 0.5° grid covering both Europe 

and the area of Africa north of 20°N. A species was considered present in a 0.5° grid-cell if the cell 

intersected with the species’ breeding distribution. The non-breeding ranges of the 36 species 

classified as long distance migrants were similarly overlaid with 0.5° grid and converted to 

presence-absence data, but for an area covering Africa south of 20°N. For the 51 species of short-

distance migrants (the non-breeding range for some of which extend into Africa), the non-breeding 

ranges were gridded for all of Europe and Africa.  

Specific trait data for the 87 species of interest were obtained principally from Gregory et 

al. (2009) who had originally derived logged mean mass data from Cramp, Simmons and Perrins 

(1977-1994) and migratory strategy from Snow et al. (1997). Each species’ principal breeding 

range habitat associations were classified as farmland, forest, wetland or ‘other’, following the 

classification of PECBMS (http://www.ebcc.info/pecbm.html). Non-breeding range habitat 

associations were taken from Atkinson et al. (2014) and Pearson and Lack (1992), and converted 

into categories comparable to those from the breeding range (open country, woodland, wetland or 

other).  

4.3.2  Climate data 

Data for three climatic variables: mean monthly temperature, precipitation, and percentage cloud 

cover for 1951 to 2000 (the period during which the majority of data underlying the species’ range 

extent maps were collected), were obtained from the CRU TS 3.2 0.5° dataset (University of East 

Anglia Climatic Research Unit; Jones 2013). These data were used in conjunction with soil water 

http://www.ebcc.info/pecbm.html
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capacity data and formulations, both from Prentice et al. (1992), to calculate four bioclimatic 

variables at 0.5° resolution for the entire area of interest. The bioclimatic variables were: mean 

temperature of the coldest month (MTCO), mean temperature of the warmest month (MTWA), the 

ratio of actual to potential evapotranspiration (APET) and growing degree days above 5° (GDD5). 

All of these variables have previously been found to be informative in describing both the range 

extents (Thuiller, Araujo & Lavorel 2004; Huntley et al. 2007; Doswald et al. 2009) and abundance 

patterns (Green et al. 2008; Gregory et al. 2009; Howard et al. 2014; Howard et al. 2015) of 

European breeding birds. In addition, annual values for these four bioclimatic variables were 

calculated, using the same method as above, for the period 1980 to 2011, to match the species’ 

population monitoring period.  

4.3.3  Species distribution models  

To model the relationship between the mean bioclimate variables from 1951-2000 (the period 

preceding and including that for which species’ range data were relevant) and species distributions, 

I used an ensemble modelling framework, combining four widely applied techniques. To provide 

contrast, I used two semi-parametric approaches, Generalised Linear Models (GLMs) and 

Generalised Additive Models (GAMs), alongside two machine-learning approaches, Generalised 

Boosting Regression Models (GBM) and Random Forests (RF).  These methods have all been 

shown to produce models that perform well when used in an ensemble SDM approach, and are 

explained in more detail below (Elith et al. 2006; Bagchi et al. 2013). Separate SDMs were built 

for a species’ breeding range and its non-breeding range. The bioclimate variables MTCO, APET 

and GDD5 were used to model the relationship between climate and a species’ breeding range 

distribution. In contrast, when modelling the relationship between climate and species’ sub-Saharan 

non-breeding ranges, MTWA was applied instead of GDD5. This is because MTWA provides a 

greater degree of discrimination than GDD5 among grid cells in the equatorial regions. GDD5, by 

contrast, provides greater discrimination at the higher latitudes associated with European migrant 

breeding ranges. All analyses were performed in R version 3.1.0 (R Core Team 2014). 

4.3.4  Spatial autocorrelation  

Spatial autocorrelation (SAC) occurs when proximate samples show a greater degree of similarity 

due to distance-related biological processes and spatially structured environmental processes 

(Dormann 2007a). Failure to account for SAC within SDMs influences both coefficients and 

inference in statistical analyses through: (1) the violation of the independence assumption and, (2) 

auto-correlated residuals and hence inflation of type 1 errors (Legendre 1993). Here, to account for 

SAC, I utilise a ‘blocking’ method (Bagchi et al. 2013), whereby I split the data into ten sampling 

blocks based on ecoregions (Olson et al. 2001 http://www.worldwildlife.org/science/data; Bagchi 
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et al. 2013). Each non-contiguous area of an ecoregion, within the area of study, was classified as a 

separate sampling unit. These sampling units were then grouped into 10 blocks so that the mean 

bioclimate was similar across all blocks, but each block covered the full range of bioclimates 

within the area of study (Moore 2014) (Figure A7).  

When fitting a model, nine of the ten blocks were used as the training data set, with model 

fit assessed using AUC (Manel, Williams & Ormerod 2001; Brotons et al. 2004) on the omitted 

block. As all blocks cover a similar range of bioclimatic data, this method ensures that a similar 

range of data was used for both testing and training models, whilst also ensuring that the data are 

spatially segregated. This method has been shown to perform well at a large scale, minimising the 

influence of SAC whilst allowing models to capture complex spatial processes (Bagchi et al. 2013). 

By sequentially omitting each of the ten blocks, fitting the model to the remaining nine blocks and 

testing the performance on the omitted block, ten models were fitted for each of the four modelling 

techniques (outlined below). This resulted in 40 models for both the breeding and non-breeding 

ranges for all 87 species. To assess model fit, the median AUC calculated for the omitted blocks, 

was taken across the ten models for each of the four modelling techniques for both the breeding 

and non-breeding ranges for each of the 87 species.  

4.3.5  Generalised Linear Models (GLM) 

GLMs (Mccullagh 1984) were used to fit up to, and including, fourth order polynomial 

relationships between the three relevant bioclimatic variables and individual species occurrence.  

For each species, after omitting one sampling block for model evaluation, 81 models (3 bioclimate 

variables ^ 4 polynomial degrees=81 combinations) were fitted to the remaining nine blocks. AUC 

was then used to assess the model fit using the excluded block of data. This procedure was repeated 

excluding each of the ten data sampling blocks sequentially. The combination of polynomial terms 

for each bioclimatic variable that maximised AUC in each of the ten repeated model fittings was 

then used to fit a final set of 10 models. 

4.3.6  Generalised Additive Models (GAM) 

Relationships between bioclimate variables and species occurrence were modelled using thin-plate 

regression splines. Models were fitted to nine blocks of data, after omission of one sampling block 

for model evaluation using AUC, and the process repeated until each of the ten sampling blocks 

had been sequentially omitted. These regressions were fitted as a Bernoulli response, using a logit 

link, and utilised the ‘gam’ function in the ‘mgcv’ R package(Wood 2011; R Development Core 

Team 2012).  
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4.3.7  Generalised Boosting Methods (GBM) 

Generalised boosting methods, a machine learning technique, builds a large number of simple 

regression trees, which are then combined to optimise predictive performance (Elith, Leathwick & 

Hastie 2008). This technique requires the user to set three parameters; learning rate (lr; also known 

as the shrinkage parameter) determines how much each tree contributes to the final model; tree 

complexity (tc) controls the number of nodes within a tree; and the number of trees (nt) that are to 

be retained in the final model. I used a cross validation approach to optimise these parameters for 

each species. Initially, omitting one block at a time, I fitted a model to the remaining nine blocks 

using an lr of 0.001, an nt of 5000 whilst allowing tc to vary between 1 and 4. The value of tc that 

returned the minimum summed error across all blocks from a cross-validation approach was used 

to fit a final set of 10 models. 

4.3.8  Random Forests (RF) 

Random forests (Breiman 2001a; Cutler et al. 2007), are a classification and regression tree 

(CART) approach, which draws bootstrap samples and a subset of predictors to construct multiple 

classification trees (Prasad, Iverson & Liaw 2006). This method requires the user to set two 

parameters; the number of trees (nt) that will constitute the final model and the number of variables 

randomly sampled as candidates at each split (mtry). I initially set mtry to vary between one and 

three and then fitted an RF model with 1000 trees to the data after sequentially omitting one block. 

I assessed the fit of the model on the omitted block using AUC. I then added 500 trees to the model 

and reassessed AUC. This process was repeated until any improvement in the value of AUC, as a 

result of the additional trees, was less than 1%. The values of mtry and nt that maximised mean 

AUC across the 10 blocks of omitted data were used to fit the final 10 models. 

4.3.9  Calculating annual climate suitability and analysis of trends 

Applying annual bioclimatic data from Worldclim (Hijmans et al. 2005 

http://www.worldclim.org/) to the final 40 SDMs for each species (10 block models x 4 modelling 

techniques), I projected climate suitability for each species for the years 1980 to 2011, for both 

breeding and non-breeding ranges.  I used the mean projected suitability from the 40 SDMs from 

across all cells within a species’ range in any given year as a measure of climate suitability. For the 

breeding range this mean suitability was evaluated across all of a species’ breeding range within 

the area covered by PECBMS (the region for which we have population trend data; Table A5). 

Mean suitability for the non-breeding range was calculated across all cells within a species’ non-

breeding range across Europe and Africa.  
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After calculating mean annual climate suitabilities for each species, I used a generalised 

linear regression, with a binomial error structure and a logit link, to regress climate suitability 

against year. The slope from this regression I term the climate suitability trend (CST) and this 

indicates, for a species, the overall trend in climate suitability between the years 1980 and 2011. 

CST was evaluated separately for the breeding and non-breeding grounds for each species. 

To assess the relationship between the species’ population trend and the CSTs for both the 

breeding and non-breeding ranges, I fitted a generalised linear regression model. Included within 

the global model were terms to control for differences in body size (logged mean mass of a 

species), migratory strategy (either short or long distance) and primary breeding and non-breeding 

range habitat associations for each species, as detailed above. In the model I also included 

interactions between CSTs and migratory strategy, as I was interested in the potential for differing 

contributions of breeding and non-breeding CST for the different migratory groups. Other 

interactions were not tested for due to the potential for over fitting. I also tested for phylogenetic 

non-independence following Freckleton, Harvey and Pagel (2002) but found no significant effect, 

and model performance was not improved by accounting for phylogeny. The most parsimonious 

models from all biologically sensible subsets of this global model were identified by selecting all 

models with an AIC value within 6 units of the best performing model but disregarding any models 

with a better-performing, simpler, nested model (Richards 2008). Additionally, I disregarded any 

models with greater than 9 degrees of freedom, due to the relatively small sample size (n = 87) 

(Dahlgren 2010).  Model averaging was used across this top candidate model set to produce 

standardised Akaike model-averaged coefficients and the relative importance of each parameter 

(Burnham & Anderson 2002).  

To investigate further the potential for differing contributions of breeding and non-

breeding CST for species with different migratory strategies, I assessed the strength of those 

interacting terms that were retained in the final averaged model. Species of each migratory strategy 

were divided into three groups depending upon the relevant CST: species with a CST of less than -

0.005 were classed as having been negatively affected by recent climate, positive species were 

those with a CST greater than 0.005, whilst stable species had a CST in between these values. Due 

to the relatively small sample size within each CST classification (see Figure 4.4), I tested for 

statistical significant difference of the median population trend from zero using one-sample Mann-

Whitney tests.  
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4.4  Results 

4.4.1  Species distribution models 

SDMs fitted to the breeding and non-breeding ranges of all short- (51 spp.) and long-distance (36 

spp.) migrants produced useful models for all species using all four SDM approaches. Model fit 

was very good across the breeding ranges (median AUC = 0.965 (range = 0.820 - 0.994); see Table 

A7 for individual model technique results). SDMs for species’ non-breeding ranges were also 

good, though median fit was slightly lower than for the breeding range models (median AUC = 

0.942 (0.785-0.985); Table A7). The mean annual projections from these models were used to 

calculate CST values for both the breeding and non-breeding grounds for all 87 species (Table A6).  

4.4.2  Predictors of population trends  

From the global model set, the candidate model set comprised 6 models with ΔAICc < 6 with 9 or 

fewer degrees of freedom (Table A8). These models were used to calculate model averaged 

parameter estimates that explained the population trends of the 87 species of migrant bird 

reasonably well (adjusted R
2
=0.48). When considered separately, the population trends of long 

distance migrants were less well explained by these model averaged parameter estimates than short 

distance migrant species (R
2
=0.18 and R

2
=0.58 respectively; Figure 4.2). 

Both CST on the breeding grounds and body mass were retained in all candidate models 

(Table A8), although the effect of CST seemed dependent upon the inclusion of breeding habitat 

association. 83 % (5) of the top models retained breeding ground habitat, whilst 67 % (4) of the 

candidate models retained migratory strategy. Non-breeding ground CST and non-breeding ground 

habitat were retained in only 33 % (2) and 17 % (1) of the top models, respectively. An interaction 

between breeding ground CST and migratory strategy was also retained in two of the top models, 

including the best performing model. 

Variables associated with the breeding ground were of greater relative importance in the 

final averaged model, than those variables associated with species’ non-breeding grounds (Table 

A9). In particular, (along with mass [relative importance 1.00]), breeding ground CST and breeding 

ground habitat were the variables with the greatest relative importance in the final model (1.00, and 

0.81 respectively). In contrast, the relative importance of non-breeding ground CST was only 0.14 

and non-breeding ground habitat relative importance only 0.19. 

Model-averaged parameter estimates indicate a significant positive effect of breeding 

ground CST on population trend (Figure 4.3, Table A9). By contrast, CST on the non-breeding 

ground was not significantly related to population trend (Figure 4.3, Table A9). A close to 

significant interaction between breeding ground CST and migratory strategy was indicated by the 
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model averaged parameter estimates (Figure 4.3, Table A9), suggesting that short distance migrants 

demonstrate a much stronger positive relationship between breeding ground CST and population 

trend (and one that differs significantly from zero) than long-distance migrants (Figure 4.4). 

Further analysis of the only significant interacting term retained by the model, the 

interaction between breeding ground CST and migratory strategy, showed that short-distance 

migrants with a positive CST across their breeding ground had a population trend significantly 

greater than zero (one-sample Mann-Whitney: V=209, p<0.01, n=21, Figure 4.4, Table A10). The 

only other category of species to show a difference from zero in their population trends were long-

distance migrants with a negative CST across their breeding grounds (trend less than zero; one-

sample Mann-Whitney: V= 26, p=0.10, n= 14, Figure 4.4, Table A10). 

 

Figure 4.2: Observed against predicted population trends using the standardised model averaged 

coefficients for 87 species of migratory birds (R
2
=0.47). Black indicates short distance migrants 

(n= 51, R
2
=0.58), red indicates long-distance migrants (n=36 R

2
= 0.18). Shaded areas represent 

95% confidence intervals around the mean 
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Figure 4.3: Standardised Model-averaged coefficients from OLS regression models of the 

population trends since 1980, (R2=0.47). Whiskers identify 90% confidence intervals around each 

coefficient. Intersection of the whiskers with the dashed line at zero indicates that the effect of the 

parameter is not statistically significant (i.e. p > 0.10). 
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Figure 4.4: Relationship between long term population trends and trend in climate suitability 

across the breeding ground ranges of 51 short-distance migrant species 36 long-distance migrant 

species, after controlling for all other variables. The line across each box indicates the median and 

the box boundaries indicate the interquartile range (IQR).Whiskers identify extreme data points 

that are non more than 1.5 times the IQR on both sides whilst the dots picture outliers. Statistical 

significant difference of the median from zero, tested with a one sample Mann-Whitney test, at the 

5% level is indicated with ** and at the 10% level with *. 
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4.5  Discussion 

Until now, the relative contribution of climate and habitat on the breeding and non-breeding 

grounds of European birds, in driving the declines of long-distance migrants (Sanderson et al. 

2006; Cresswell 2014; Vickery et al. 2014) has hitherto been poorly understood. Here I have 

shown the importance of these variables and how the strength of these relationships varies with a 

species’ migratory strategy. I discuss these results in light of three key findings: 1) long term 

climate trends and habitat are of greater importance on species’ breeding grounds than on their 

non-breeding grounds; 2) climate trends on the breeding grounds are more important in explaining 

variation in long term population trends for short- distance migrants than for long-distance 

migrants; and 3) my ability to explain species’ population trends depends on their migratory 

strategy. 

4.5.1  Importance of breeding and non-breeding ground conditions 

This is the first large scale direct assessment of the relative importance of climate and habitat, on 

both the breeding and non-breeding grounds, on populations of migratory birds. I have 

demonstrated that those variables associated with migratory species’ breeding grounds are of 

relatively greater importance in explaining long-term population trends than those associated with 

the non-breeding grounds. In particular, these results indicate the importance of climatic conditions 

on species’ breeding grounds, with a positive relationship between population trend and breeding 

ground CST, even after accounting for migratory strategy, mass and habitat associations. These 

results corroborate previous research demonstrating that interspecific variation in the recent 

population trends of European birds is correlated with climatic trends (Green et al. 2008; Gregory 

et al. 2009). However, despite the potential for climatic conditions on the non-breeding grounds to 

impact directly upon population sizes (Bearhop et al. 2004; Norris et al. 2004; Saino et al. 2004; 

Gordo et al. 2005; Studds & Marra 2005; Ockendon, Johnston & Baillie 2014), I found that this 

effect is weak relative to the effects of breeding ground climate and habitat affinity, when 

considered across a large number of species at a wide spatial scale. This may be attributable, in 

part, to the inclusion of some species in this analysis that are considered to be itinerant during the 

non-breeding season. For example, some sub-Saharan migrants, such as Willow Warblers 

(Phylloscopus trochilus), move southwards through the non-breeding range over the course of the 

European winter (Salewski & Jones 2006; Cresswell, Boyd & Stevens 2008; Newton 2008).  With 

non-breeding ranges being used only transiently by some species, long-term climatic conditions in 

these areas may be less important in driving population trends for these species.  

Conditions across the Sahel, a key non-breeding habitat for long-distance migrants, are 

intricately linked with seasonal precipitation (Ockendon, Johnston & Baillie 2014; Vickery et al. 
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2014). If rainfall in these regions is high, resources available to migrant birds will be plentiful. 

Since the 1960s, drought conditions have predominated in this area (Nicholson 2000), despite an 

apparent increase in rainfall across North Africa since the 1990s (Fontaine et al. 2011). The 

resulting habitat changes have been widely linked to the population declines of long-distance 

migrant birds observed since the 1970s (Sanderson et al. 2006). These results show that despite the 

importance of these long-term climatic trends on the non-breeding grounds for determining the 

population trends of long-distance migrants, that the population trends of these species are more 

strongly associated with long-term trends in climate suitability on their breeding ranges.  

My analyses, which categorise species according to their habitat preferences, also show 

systematic differences in population trends between species with different breeding and non-

breeding ground habitat affinities. The importance of habitat preferences in explaining variation in 

population trends, strongly suggests that habitat effects are playing an important role in population 

trends, with these results indicating that these effects are equally strong on both the breeding and 

non-breeding grounds (see standardised coefficient values in Figure 4.3, Table A9). This is a well-

documented situation in Europe, where the population trends of species have been shown to depend 

on their breeding ground habitat preferences (Sanderson et al. 2006). In particular, these results 

highlight the population declines exhibited by farmland breeding bird species (Donald, Green & 

Heath 2001; Donald et al. 2006). In a species’ non-breeding range, an affinity for open country 

habitats, a land use type analogous with farmland in Europe, appears to have a negative effect of 

similar magnitude on species’ population trends. Both reduced rainfall (Nicholson 2000) and 

agricultural intensification have been shown to lead to widespread desertification and habitat 

degradation in open country habitats across the Sahel (Sanderson et al. 2006). Reductions in 

rainfall and primary productivity will limit available resources in these areas and in turn restrict the 

populations of migrant birds (Baillie & Peach 1992). This result suggests that systematic changes 

within broad land-use types in sub-Saharan Africa may be causing changes in populations in suites 

of species of similar habitats, in a similar way to those observed across Europe.  

4.5.2  The role of breeding ground climate suitability in determining long-term population 

trends 

The relationship between trends in climate suitability across species’ breeding grounds and their 

population trends is partially dependent upon migratory strategy. Whilst positive trends in climate 

suitability across the breeding grounds of short-distance migrants correspond with increasing 

population trends, this is much less the case for long-distance migrants. The breeding and non-

breeding grounds of short-distance migrants are more closely linked than those of long-distance 

migrants. Increases in climate suitability across the breeding grounds of short distance migrants 

will not only reflect improvements in breeding conditions but also in over winter survival (Pearce-
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Higgins et al. 2015). In contrast, improving climate suitability across the breeding grounds of long-

distance migrants will have little impact on their overwinter survival. Additionally, long-distance 

migrants are more exposed to the effects of phenological mismatch (Moller, Rubolini & 

Lehikoinen 2008; Saether & Engen 2010). Many species rely on a synchrony between the timing of 

key life history events, such as timing clutch hatching to coincide with key prey availability (Both 

et al. 2006; Both et al. 2010). Increases in winter and spring temperatures at high and medium 

latitudes have led to advancements in spring phenological events, such as leaf unfolding and 

flowering (Walther et al. 2002; Menzel et al. 2006a; Schwartz, Ahas & Aasa 2006). To maintain 

synchrony with the phenology of prey species, it is essential that migratory birds shift the timing of 

their spring migration to track these advances in phenological events (Saino et al. 2011). However, 

species responses do not all occur at the same rate with many studies reporting a greater advance in 

the timing of spring migration of short distance migrants that that of long distance migrants 

(Moller, Rubolini & Lehikoinen 2008; Knudsen et al. 2011; Saino et al. 2011). Due to the 

constraints that conditions in their non-breeding grounds and stop-over sites have upon the arrival 

on the breeding grounds, long-distance migrants are not as adept to adapting the timing of their 

migration (Both & Visser 2001). This renders them more susceptible to phenological mismatch 

than their short distance migrant counterparts. Higher spring temperatures, resulting in 

advancements in tree and insect phenology, have been shown to have negative effects on 

populations of long-distance migrants (Both & Visser 2001; Pearce-Higgins et al. 2015). By 

modelling mean annual climate, traditional SDMs are unable to capture these phenological shifts in 

climate. They are, however, able to show that despite beneficial changes in annual climate across 

the breeding ranges of some long-distance migrants, these species are less able to benefit than their 

short-distance migrant counterparts.   

The demonstration here of the lower ability of breeding ground CST to explain variation in 

the population trends of long-distance migrant species may also suggest that factors additional to 

climate on the breeding and non-breeding ground are responsible for the majority of variation in 

populations of long-distance migrants, which I discuss in more detail below.  

4.5.3  Differences between short and long-distance migrants 

A large proportion of the variance in the population trends of short distance migrant species was 

explained by CST and habitat, the latter on both the breeding and non-breeding grounds, as 

indicated by the performance of the regression models (58% of the variation explained). This was 

not the case for long distance migrants, where the best models explained a more modest proportion 

of the variance in long-term population trends (18 % of the variation explained). This is perhaps 

unsurprising given the high levels of complexity in the annual cycles of long-distance migrant 

species (Robinson et al. 2009), the potential for phenological mismatch outlined above, and that 
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changes in climate suitability at migratory stop-over sites might also be important (Finch et al. 

2014; Vickery et al. 2014). Their use of multiple landscapes through the year also renders long-

distance migrants more likely to be exposed to land-use changes during at least part of their annual 

cycle than are other species (Runge et al. 2014). In addition to the pressures experienced by short-

distance migrants, long-distance migrants are also susceptible to the effects of mortality during 

extended migrations. Migration mortality could result from resource depletion and patchy resource 

availability on passage, as well as direct hunting pressures, an acknowledged cause of mass 

mortality of Europe-African migrants whilst on migration (Sillett & Holmes 2002; Newton 2010).  

4.5.4  Future directions 

One area for future development is in improving knowledge of the destinations of birds that 

migrate out of Europe during the non-breeding season. Recent advancements in tracking and 

sensing technology are enabling us to fill some of the gaps in our understanding of migration by 

providing  information on the non-breeding ranges of these species (Robinson et al. 2010; Renfrew 

et al. 2013; Trierweiler et al. 2014; Finch et al. 2015). This will ensure that our ability to assess the 

range and habitat use of these species are equally precise on the non-breeding grounds and the 

breeding grounds (Vickery et al. 2014). Further work should also consider that the causes of 

migrant declines are likely not only to be species specific but also population specific (Cresswell 

2014). Often populations breeding in different parts of Europe over-winter in distinct areas of the 

non-breeding range (Newton 2010). Currently, our lack of knowledge of the links between the 

breeding and non-breeding grounds of populations makes evaluating the relative importance of 

climate on the breeding versus non-breeding range in affecting population trends difficult at a finer, 

national scale. Future identification of population specific wintering areas, migration routes and 

stopover locations of different breeding populations will enable a more thorough understanding of 

the mechanisms driving the declines of long-distance migrants  (Ockendon et al. 2012).  

4.5.5  Conclusions 

For the first time I have demonstrated at a continental scale that long-term climate change and 

habitat associations are of greater importance on breeding grounds rather than non-breeding 

grounds in determining the population trends of multiple migratory species. I have also shown the 

effects of both breeding and non-breeding habitat associations on population trends and in 

particular identified that species that breed on farmland and winter in open country habitats are 

most likely to have declined. Importantly, I have shown that, in recent decades, long-distance 

migrants have been less able than short-distance migrants to benefit from improvements in climate 

suitability across their breeding grounds. Yet, despite these important findings, what drives the 

population trends of long-distance migrants is still not fully understood. This may be because of the 
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lack of equivalent data from their stop-over locations on migration, when the main mortality may 

occur (Sillett & Holmes 2002).  If this is to be resolved and further declines prevented, population 

level investigations into the use of non-breeding areas by these species are urgently required.   
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Chapter 5 

 Accounting for spatial autocorrelation in predictions of abundance 
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5.1  Abstract  

Assessing the impacts of climate change on species may require the application of species 

abundance models to projections of future climate. The efficacy of these models to project to novel 

domains, however, remains untested. A major limitation, that might preclude the use of these 

models for predicting future patterns of abundance in geographic space, is that they often require 

information about spatial autocorrelation (SAC). Here, to evaluate the importance of SAC when 

applying abundance models to novel areas, I compare three methods that are used to predict species 

abundance: (1) applying models that do not account for SAC, (2) using models that incorporate an 

SAC adjustment term to form a single round of predictions, and (3) iteratively applying models that 

incorporate an SAC adjustment term until a stable solution is reached. Here, I utilise Gibbs 

sampling to estimate abundances whilst concurrently estimating an SAC adjustment term. I 

evaluate these three approaches in areas with known abundance data.  I test the models in two 

regions: one region is within the model-fitting parameter space, and one is beyond the space used 

for model-fitting. My study system comprises breeding bird species that are distributed across 

Europe, and for which I have estimates of abundance in individual 50 km cells across most of 

Europe. I relate the abundance of these species to climate and habitat variables, and test the ability 

of the different model types to predict (a) abundance within 50 km cells and (b) larger, national 

abundance estimates. I show that, when applied within model-fitting parameter-space, methods that 

did not consider SAC generally predicted abundances in individual cells better than methods that 

accounted for SAC. However, models that do account for SAC were significantly better at 

predicting areas of high abundance than models that ignore SAC. In novel regions beyond model-

fitting parameter space, the ability to predict abundances in 50 km cells declines markedly across 

all three methods. In contrast to the individual cell predictive performance, all three approaches 

were excellent at predicting national bird population estimates when applied within model fitting 

parameter-space and all had good predictive ability in novel regions. Predictions from a single 

iteration of SAC were the only ones not to demonstrate significant bias in their deviance. Given 

that fine scale projections of abundance were universally poor, even when applying the best 

available approaches to control for SAC, I would caution against making such projections. With 

accurate large scale projections of abundance, I was able to predict overall changes in populations 

due to climate change but not advise on management options at smaller spatial scales.  

  



www.manaraa.com

75 
 

5.2  Introduction 

 Predicting changes in abundance is key to identifying potential changes in the conservation status 

of species in response to future climate change (Pereira et al. 2010; Dawson et al. 2011; Bellard et 

al. 2012; Mair et al. 2014).  Syntheses of climate change and future impacts on biodiversity rely 

heavily on species distribution and abundance modelling to define a species’ ‘ecological niche‘, 

and hence to estimate changes under future climate projections (Guisan & Thuiller 2005; Elith, 

Kearney & Phillips 2010). However, the reliability of species distribution and abundance modelling 

techniques is subject to several key constraints (Pearson & Dawson 2003; Dormann 2007a; Record 

et al. 2013). Chief among these constraints is the failure of models to account for the non-

independence of spatial data, termed spatial autocorrelation (SAC) (Bahn & McGill 2007; 

Dormann 2007a; Elith, Kearney & Phillips 2010; Bahn & McGill 2013; Record et al. 2013). SAC 

occurs frequently in ecological data and arises because points closer together tend to be more 

similar in their ecological characteristics, such as species occurrence and abundance, than points 

that are further apart (Legendre 1993; Record et al. 2013). This occurs as a result of either distance-

related biological processes, such as dispersal, spatially structured environmental processes, such as 

soil moisture content, or incorrect model specification (Dormann 2007a).  Consequently, SAC can 

be a serious limitation on the use of species distribution and abundance models for hypothesis 

testing and prediction. The presence of SAC means that model assumptions of the independence 

and identical distribution of residuals are violated, which in turn can lead to biased parameter 

estimates and poor model inference (Legendre 1993; Dormann 2007a). Failure to account for SAC 

has been shown to result in the misidentification of important driving variables (Lichstein et al. 

2002; Segurado, Araujo & Kunin 2006; Dormann 2007a; Record et al. 2013).  

Several methods have been developed to control for the effects of SAC. For example, 

generalised least squares models (GLS) directly model how the variance around the expected 

response value at a point co-varies with that of other neighbouring points, by altering the models’ 

variance-covariance matrix (Dormann 2007a; Dormann et al. 2007). An alternative method is to 

subsample the original spatial data in a manner that constrains observations to be spaced 

sufficiently far apart that they are not subject to correlation (Segurado, Araujo & Kunin 2006). 

SAC also contains information that one may not wish to ‘control’ for. Unmeasured ecological 

factors, for example, population processes  such as dispersal, and underlying resources such as soil 

moisture, may all give rise to a spatially autocorrelated dataset (Dormann 2007a; Dormann et al. 

2007; Warren et al. 2014). Often, species distribution and abundance models incorporate an 

autocovariate term for SAC in the models as an indirect measure of the importance of these 

additional processes (Augustin, Mugglestone & Buckland 1996; Keitt et al. 2002; Segurado & 

Araújo 2004; Segurado, Araujo & Kunin 2006; Howard et al. 2014). This term not only reflects the 
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extent to which observed abundance is driven by spatial aggregation within the underlying 

environmental covariates, but also indicates the extent to which these patterns are driven by 

dynamic ecological processes (Keitt et al. 2002). In some cases this term has been shown to explain 

the majority of variation in species’ abundance (Chapter 3, Howard et al. 2015). 

When utilising species distribution and abundance models for assessing the impact of 

future climatic change (Thomas et al. 2004; Johnston et al. 2013; Mair et al. 2014), models may be 

extrapolated to conditions that differ from those used in model calibration, which can result in 

erroneous predictions (Araújo & Guisan 2006; Heikkinen et al. 2006). If correlations between 

variables change across space (Elith, Kearney & Phillips 2010), or if species-environment 

relationships are not conserved (Kissling et al. 2012; Wisz et al. 2013; Snickars et al. 2014), 

projections may not be ecologically meaningful or statistically valid (Record et al. 2013). Often, 

the efficacy of species distribution and abundance models to project into novel domains remains 

untested (Araújo & Guisan 2006). Furthermore, little is known about the effectiveness of using a 

model which includes a spatial autocovariate term to project species abundance across an area not 

included in model fitting and testing. This is, in part, due to the difficulties associated with 

calculating a spatial autocovariate term across an area without a priori abundance data, such as in 

unsurveyed regions or into the future. 

To overcome the problems associated with projecting species abundance across an 

unsurveyed area, with a model that uses a spatial autocovariate term, here we utilise Gibbs 

sampling (Geman & Geman 1984). This method iteratively estimates abundance, from which a 

spatial autocovariate term can be calculated across unsurveyed areas/periods and has been shown to 

improve the precision of predictions from species distribution models (Augustin, Mugglestone & 

Buckland 1996; Augustin, Mugglestone & Buckland 1998). The Gibbs sampler is a Markov Chain 

Monte Carlo (MCMC) method, which allows the estimation of  abundances in unsurveyed areas by 

iteratively building upon initial sample values (Augustin, Mugglestone & Buckland 1996; 

Augustin, Mugglestone & Buckland 1998). 

Here, I test the utility of Gibbs sampling to predict the abundance of European breeding 

birds across unsurveyed areas whilst taking into account unmeasured ecological factors. I 

specifically address whether incorporating measures of SAC improves abundance predictions and 

if these methods produce meaningful abundance predictions in areas beyond model fitting 

parameter space. I test methods against two datasets for which we include no a priori abundance 

data; (1) a discrete sub-region within model parameter space, and (2) a region beyond model 

parameter space. These test areas are used as proxies for situations when models are projected into 

novel areas within or beyond model-fitting parameter space, both of which can arise when 

predicting changes under future climate change. Model performance is tested by assessing two 
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issues: (1) whether the different models can predict abundance estimates in 50 km UTM grid-cells 

within the two test regions, and (2) whether models can predict national-scale abundance estimates 

(from combing grid cell estimates). An ability to estimate the former would give us confidence in 

using such models to plan fine-scale (i.e. sub-50 km) conservation adaptations actions under 

climate change. An ability to estimate national populations would suggest such models have most 

utility in broad-scale conservation planning. 

5.3  Methods 

5.3.1  Species data 

Species abundance data are primarily as described in Chapter 2. However, only species with an 

independent assessment of national population size from the British Trust for Ornithology’s (BTO) 

New Atlas of Breeding Birds in Britain and Ireland (Gibbons et al. 1993) were included in this 

analysis. This atlas provides an independent national population size estimates for both Great 

Britain and Ireland for the period relating to 1988-1991, which corresponds to the period over 

which the EBCC atlas data were collected. The remaining 181 species were used for all subsequent 

analyses in this chapter.  

5.3.2  Bioclimatic data 

Bioclimatic data are as described in Chapter 3. 

5.3.3  Land use data 

Land use data are as described in Chapter 2. 

5.3.4  Model fitting 

To model species abundance, I used a machine learning technique, random forests (RF) (Cutler et 

al. 2007). Robust to over-fitting, RF is widely recognised to produce good predictive models; 

hence, it is increasingly applied to species distribution modelling (Elith et al. 2006; Strobl, Malley 

& Tutz 2009; Elith, Kearney & Phillips 2010; Boulangeat, Gravel & Thuiller 2012). I use RF 

models in preference to ordinal regression techniques because they make fewer assumptions about 

the distribution of predictor and response variables (Cutler et al. 2007). RF models have been 

shown to perform well when assessed using several measures of model discrimination and 

calibration (Chapter 2, Howard et al. 2014). I use a conditional inference framework in the R 

package ‘party’ to account for potential biased variable selection (Hothorn, Hornik & Zeileis 

2006a; Hothorn, Hornik & Zeileis 2006b; Strobl, Hothorn & Zeileis 2009b).  
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Models were fitted using ten-fold cross validation to reduce SAC between training and test 

data and to minimise over-fitting. Only data from mainland Europe were used in the process of 

model fitting. To improve stability, each model was built using 1000 classification trees fitted to a 

random sample of 70% the observed data from mainland Europe. The remaining 30% of 

observations from mainland Europe (the semi-independent test data not used initially for model 

fitting) were used to estimate model performance (Cutler et al. 2007) using AUC, a threshold 

independent measure (Manel, Williams & Ormerod 2001).  

To account for SAC in my models a spatial autocovariate term (L) was calculated for each 

UTM grid cell based on the surrounding abundance (in directly adjacent cells) of conspecifics, 

based on the EBCC abundance data, using the following equation:  

 L   log
10

 
1

n
  

1

2
 10Ai n

i         (1)  

where L is the surrounding local abundance or spatial autocovariate term, n is the number of 

adjacent cells, A is the categorical abundance scale, and i is the abundance category index. In the 

formula, the log scaled integer estimates of abundance in the adjacent cells are back transformed 

and divided by two to give an absolute abundance for each cell relating to the midpoint of the 

abundance category. The mean of these estimates of surrounding absolute abundances across cells 

is log transformed to enable direct comparison with the original spatial abundance values on the 

existing ordinal scale. 

For each of the 181 species, two models were fitted to each of the ten cross validation data 

samples, one that accounts for SAC, and one that does not, with all climate and land use variables 

remaining the same for both models. This resulted in ten pairs of models for each of the 181 

species.   

5.3.5  Gibbs sampler 

As areas without a priori information on abundance have no data with which to calculate a value of 

the spatial autocovariate term (L) for use in the RF models, initial estimates of abundance using the 

RF model that does not account for SAC are generated. Then one of the unsurveyed cells is 

randomly selected and, using the initial estimates of abundance, L is calculated for the focal cell. 

The abundance estimate is then recalculated for that cell using the RF model that accounts for 

SAC. This process is repeated for all the unsurveyed cells sequentially and the process repeated 

iteratively until a final estimate of abundance has been converged upon for each cell. This is 

explained in full in Table 5.1.  
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The number of iterations required (T) depends on how quickly the Gibbs sampler 

converges. Here, I found that abundance predictions for all cells converged upon (or were stably 

oscillating around) a final prediction within 20 iterations for 95% of species and within 30 

iterations for all 181 species (Figure A8). 

The Gibbs sampler produces a prediction of abundance after each iteration, and uses these 

predictions to generate L. As a result, the predictions from one iteration depend heavily on the 

predictions from the previous iteration. The predicted abundance for each cell was calculated as the 

product of the probability of a cell falling within each abundance category, by the log of the 

midpoint of that abundance category, summed across all abundance categories. This reduced the 

variation introduced in each iteration and improved convergence rates. 

  

Table 5.1: Gibbs sampling method for predicting abundance, adapted from the method outlined  

in Augustin, Mugglestone & Buckland (1996) 

1. Fit two RF models to surveyed squares using the method outlined  

i. standard RF model  

ii. RF model with spatial autocovariate term 

2. Predict abundance across all unsurveyed squares using the standard model.   

3. Calculate surrounding local abundance (L) using equation 1 for all unsurveyed 

squares 

4. Using the random forest model with SAC predict abundance for all unsurveyed 

squares.  

5. Recalculate L for all unsurveyed squares using equation 1 

6. Perform the Gibbs sampler: 

Do the following T times or until the predictions have converged.  

i. Pick a random square and delete abundance prediction 

ii. Predict abundance using RF model with SAC term 

iii. Recalculate L for square. 

iv. Move onto next square and repeat a. to c. until abundance has been 

recalculated for all unsurveyed squares 

7. Use the sum of the absolute differences of predicted abundance across all squares 

between each iteration to indicate progress towards convergence. This absolute 

difference will be zero when the predictions have fully converged.  
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Using the above procedures, three methods with which to predict the spatial abundance of 

species are produced: 

 

1:  Method without SAC- Standard RF model 

 2:  Single iteration SAC- Using RF model that accounts for SAC with L calculated for all 

cells from a single projection of abundance (stages 1-4 of algorithm in Table 5.1) 

 3: Gibbs sampling- Using RF model that accounts for SAC, with L calculated by Gibbs 

sampling  

5.3.6  Model Assessment and Comparison 

Assessment data sets: The utility of these three methods is assessed on two data sets for which no a 

priori abundance data is included. The first data set is a discrete sub-region from within the model 

building arena. Due to the computationally intense requirements of Gibbs sampling I limited this 

area to Germany, Denmark and The Netherlands (hereafter ‘DE test data’ for brevity). This area is 

comprehensively covered by quantitative abundance estimates in the EBCC atlas, enabling accurate 

assessment of model performance. The second data set is from a region beyond model parameter 

space, which is intended to replicate the type of situation to which species-abundance models 

conditioned on current distributions might be applied under scenarios of future climate change. For 

this purpose, the models were applied to a discrete area outside of the model training domain: Great 

Britain and Ireland (hereafter ‘GB test data’ for brevity). To ensure that the parameter space 

occupied by the two test regions were within and beyond model fitting parameter space 

respectively, a principal components analysis (PCA) was carried out on the three climatic variables 

(GDD5, MTCO, APET) from across all areas. Using the R package ‘ks’ (Duong 2007) a 

multivariate kernel density estimate plot of the first two PCA axes with the data split by three 

groups (the entire training data set, the assessment region within parameter space and the 

assessment region beyond parameter space) was produced to assess visually the location of the 

different parameter spaces. These two test areas are used as proxies for situations when models are 

projected into novel areas within or beyond model fitting parameter space, both of which can arise 

when predicting changes under future climate change (Heikkinen et al. 2006). To assess model 

performance, there were, in total, 30 realisations (3 methods x 10 cross-validation data sets) of the 

spatial abundance for 181 species for both of the test datasets. 

Assessment methods: Model performance was tested in two ways. First, I assessed whether the 

three SAC methods (no SAC, single iteration SAC, Gibbs sampling) could predict abundance 

estimates in the 50km UTM grid cells for the two test data sets. Cohen’s weighted Kappa (Landis 

& Koch 1977) was used to compare predicted abundances across the 50 km cells against observed 
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abundances for each of the 181 species. Second, by combining these grid cell estimates, I assessed 

how well the three methods predicted national-scale abundance estimates. Estimates were 

calculated for each of the 10 realisations of abundance, and for each of the three methods. A mean 

national abundance estimate was taken across the 10 abundance realisations for each of the three 

methods for each species. For the DE test data, estimates of combined national abundances from 

the models were compared with the combined estimates of national abundances from the EBCC 

atlas data. For the GB test data, the predicted mean national population sizes for the 181 species 

from the models were compared with estimates of the population sizes from the British Trust for 

Ornithology’s (BTO) New Atlas of Breeding Birds in Britain and Ireland (Gibbons et al. 1993). To 

check for systematic bias between the recorded and modelled national estimates of abundance for 

the 181 species, a one-sample two-tailed t-test was used to test for a significant difference between 

the distribution of the log-transformed deviance and zero. This was repeated separately for each of 

the three methods and for the two test data sets.  

5.4  Results 

RF models, both with and without an SAC term, were fitted successfully to spatial abundance data 

from mainland Europe for 181 species of breeding birds. All models generally performed well with 

a mean AUC score of 0.96 (standard deviation (S.D.) ± 0.03) when tested on withheld data. 

However, the models fitted with an SAC term performed significantly better (mean= 0.97, S.D ± 

0.03) than those without mean= 0.95, S.D. ± 0.03, Paired t-test: β= 0.02, t180 = 21.43, p-value < 

0.01; Figure A9). 

The first axis of the PCA of all European 50 km cells, based on the three climatic variables 

(GDD5, MTCO, APET) accounted for 83% of the variability, whilst the second axis accounted for 

13% of the variability. The kernel density estimate plot (Figure 5.1) demonstrates that the 

parameter space occupied by the DE test data was firmly within that of the model training data set, 

whilst that occupied by the GB test data was significantly different.  
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Figure 5.1: Multivariate kernel density plot of the first two axes from a PCA conducted on the 

three climatic variables (GDD5, MTCO, APET). Areas shaded red indicates points from the entire 

model training data set. Green shading indicates points from the first assessment data set, Germany, 

Denmark and the Netherlands, an area within model parameter space. Blue shading indicated 

points from the second assessment data set, Great Britain and Ireland, an area distinct from model 

parameter space. The intensity of shading indicates percentage contours, with the lightest shade for 

each colour showing the 50% contour, the medium shade the 75% contour and the darkest shade 

the 90% contour. 

5.4.1  Comparison of abundance predictions 

5.4.1.1  Abundance predictions at the cell level 

Predictions of abundance in the 50 km UTM grid cells across the DE test data, were fair according 

to the mean weighted Cohen’s kappa score (Landis & Koch 1977) when calculated across all 181 

species. Abundance predictions using the model without SAC, were the most accurate with a mean 

weighted Cohen’s kappa of 0.63 (S.D.± 0.23, Table 5.2, Figure A10a). Abundance predictions 

from the single iteration SAC model were significantly worse than the model without SAC (Table 
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5.2, Figure A10b). The abundance predictions from the Gibbs sampling models were significantly 

worse than those from both the models without SAC and the single iteration SAC models (Table 

5.2, Figure A10c). The relative performance of the three methods in predicting abundance in 50 km 

cells was not consistent across the observed abundance categories. For the lower abundance 

categories, the predictions across the DE data set were significantly better using models with no 

SAC (ANOVA on logit transformed data, with species as an error term: F2,346= 8.62, p<0.01, 

Figure 5.2a), whilst at higher abundance categories, abundance predictions were more accurate 

using single iteration SAC models (ANOVA on logit transformed data with species as an error 

term: F2,112= 4.15, p=0.02, Figure 5.2a). 

 

Table  5.2: Model assessment and comparison. Model performance was assessed for each species 

with Cohen’s Weighted Kappa statistic, with a mean across all species and the standard deviation 

reported here. A repeated measures ANOVA was used to compare the predictive performance of the 

three methods across all species for each test data set separately. 

   Method comparisons 

Test 

data 

Method Cohen’s 

Weighted Kappa 

(Standard 

Deviation) 

Without SAC Single SAC 

iteration 
Gibbs 

Sampling 

DE Test Data results 

 Without SAC 0.63 (±0.23) x - - 

 Single SAC 

iteration 

0.56  (±0.25) z=-7.49, p<0.01 x - 

 Gibbs Sampling 0.46  (±0.26) z=-18.40, p<0.01 z=-10.91, p<0.01 x 

GB Test Data results 

 Without SAC 0.21 (±0.20) x - - 

 Single SAC 

iteration 

0.22 (±0.22) z=1.14, p=0.76 x - 

 Gibbs Sampling 0.20 (±0.22) z=1.26, p=0.62 z=-2.40, p=0.05 x 

 

Abundance predictions in 50 km cells across the GB data set, were slightly worse than 

those across the DE data set. However, unlike the findings for the DE data set, for the GB data set 

predictions from models with a single SAC iteration were the most precise (Table 5.2, Figure 
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A11b). Abundance predictions from the models without SAC, although slightly less precise, were 

not significantly different from the models with a single SAC iteration (Table 5.2, Figure A11a). 

The abundance predictions from Gibbs sampling were significantly worse than those from single 

iteration SAC models but no different from models without SAC (Table 5.2, Figure A11). Again, 

when tested on the GB data set, the relative performance of the three methods was not consistent 

across the observed abundance categories. Models with no SAC term produced significantly more 

accurate abundance predictions than the models including SAC, for the lower abundance categories 

(Figure 5.2b). For the higher abundance categories, however, models using Gibbs sampling 

produced the most accurate abundance predictions (Figure 5.2b).  

5.4.1.2  National abundance predictions 

For the DE data set, predictions of national abundance were most accurate using models with a 

single SAC iteration (R
2
=0.88 for modelled versus recorded populations; Figure 5.3). Predictions 

using either no SAC or using Gibbs sampling were both, on average, slightly worse than the single 

iteration predictions (each with an R
2
 of 0.86; Figure 5.3). For all three methods a high percentage 

of the mean predictions of national abundance were within one order of magnitude of the recorded 

national abundance (method one = 80.11%, method two =  81.03% and method three = 80.66%). 

All three methods showed significant negative bias in their deviance, although the extent of bias 

varied between methods. Bias was negative in all methods, with the largest bias in deviance shown 

by the method without SAC (t393=-5.49, p<0.01, Figure 5.3d), and progressively smaller bias in the 

single step SAC method (t393=-4.32, p<0.01, Figure 5.3e) and Gibbs sampling (t393=-2.60, p=0.01, 

Figure 5.3f). 

Predictions of national abundance in novel parameter space (the GB dataset) correlated 

marginally better with the recorded abundances when using no SAC (R
2
= 0.48) than with single 

SAC predictions or Gibbs sampling (R
2
= 0.47 and 0.46 respectively). Across all three methods, 56-

57% of predicted abundances were within one order of magnitude of the recorded national 

abundances (57% model without SAC, 56% models with both a single SAC iteration and Gibbs 

sampling; Figure 5.4). As was the case with cell-based estimates, the degree of bias in deviance 

between predicted and recorded national abundances varied among methods. The model without 

SAC displayed significant negative bias in deviance (t355=-2.99, p<0.01, Figure 5.4d), the model 

with a single SAC iteration had no significant bias (t355=0.90, p=0.36, Figure 5.4e), and the model 

with Gibbs sampling showed significant positive bias (t355=2.76, p=0.01, Figure 5.4f). 
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Figure 5.2: Proportion of correctly predicted cells across species between the three different 

methods, split by each observed abundance category. Part a) shows performance across the first test 

dataset, an area included within the model building arena, and b) shows performance across the 

second test dataset, an area beyond the model building arena. Dots represent the mean across all 

181 species, whiskers showing the 95% bootstrapped confidence intervals around the means.  

Letters above the bars denote significant differences in the precision of predictions between 

methods as indicated by an ANOVA on logit transformed response with species as an error term 

(p<0.05); where A) indicates a significant difference between the precision of models without SAC 

and single iteration SAC, B), a significant difference between models without SAC and Gibbs 

sampling and C) a significant difference between single iteration SAC and Gibbs sampling. 

Numbers below the letters indicate the number of observed cells across all species with that 

observed abundance class within a data assessment area.  
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Figure 5.3: Predicted national population sizes for three countries included within the area of 

model calibration based on spatial abundance predictions from the three methods: a) model without 

SAC (R
2
=0.86), b) single iteration SAC (R

2
=0.88) and c) Gibbs sampling (R

2
=0.86).  Each point 

represents the mean predicted national population size against the observed national population size 

for one of the 181 species of interest for either Denmark (coloured red) Germany (coloured green) 

or The Netherlands (coloured blue). Error bars represent the standard deviations. The black line 

indicates a one to one relationship, while one order of magnitude from this relationship is indicated 

by the grey area. The density histograms show the distribution of the log scaled deviance between 

the observed and predicted total abundance from each of the three methods d) Model without SAC, 

e) single iteration SAC and f) Gibbs sampling. 
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Figure 5.4: Predicted national population sizes for two countries excluded from the area of model 

calibration based on spatial abundance predictions from the three assessment stages: a) Model 

without SAC (R
2
=0.45), b) Single iteration SAC (R

2
=0.47) and c) Gibbs sampling (R

2
=0.46).  Each 

point represents the mean predicted national population size against the observed national 

population size for one of the 181 species of interest for either Ireland  (coloured red) or Great 

Britain (coloured blue). Error bars represent the standard deviations. The black line indicates a one 

to one relationship, while one order of magnitude from this relationship is indicated by the grey 

area. The density histograms show the distribution of the log scaled deviance between the observed 

and predicted total abundance from each of the three methods d) Model without SAC, e) Single 

iteration SAC, and f) Gibbs sampling. 
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5.5  Discussion 

SAC has been shown to explain much variation in species abundance (Chapter 3, Howard et al. 

2015) but, until now, methods to incorporate SAC when predicting abundances into novel areas 

have been lacking. I have shown that, by accounting for unmeasured ecological factors such as 

dispersal, methods that include SAC terms can predict more precisely where species will be most 

abundant. In addition, I have shown that these methods can be used to make meaningful predictions 

of abundance beyond model building parameter space. Here, I discuss these finding in greater 

detail, and consider the potential for future application of these methods.  

I have shown that significant improvements in the predictions of national abundance can be 

obtained from methods that incorporate SAC. These improvements do not increase precision but do 

reduce bias. The improvements in performance result from the greater accuracy that SAC-based 

methods demonstrate when predicting higher order abundance categories at the individual grid-cell 

level. Clearly, at broad spatial scales, environmental variables can be used to explain patterns in the 

relative quality of habitats, without necessarily accurately explaining the abundance of a species in 

a country (Vaz et al. 2008). It has been shown that areas where a species is abundant do not always 

coincide with those areas of highest environmental suitability (VanDerWal et al. 2009). This can 

occur in a number of circumstances. For instance, the buffer effect may result in unexpectedly high 

abundance in the surrounding areas despite low environmental suitability (Stephens et al. 2015). 

Models that utilise only environmental variables and that do not account for biotic factors such as 

dispersal could, in such situations, underestimate the abundance in adjacent, less suitable cells 

(Conlisk et al. 2012). Alternatively, species abundance may be dictated by abiotic factors not 

explicitly modelled, such as microclimate, but the effect of which can be reflected in the SAC term 

(Dormann 2007a).  When environmental suitability is low, a large number of individuals cannot be 

supported in an area (VanDerWal et al. 2009); this is why the inclusion of an SAC term that 

accounts for the effects of unmeasured biotic factors does not improve the precision of the 

predictions of lower order abundance classes. It is the core areas of a species’ range, where they 

occur at the highest abundance which are usually of highest priority for conservation (Gibson, Van 

der Marel & Starzomski 2009). Identifying these high density areas requires both areas of high 

environmental suitability to be determined and for the role of unmeasured ecological factors for 

determining the population size to be considered (VanDerWal et al. 2009). 

Importantly, I have also shown that we can get meaningful predictions of species 

abundances in areas beyond the parameter space used to train models. The quality of these 

predictions is dependent upon the scale at which they are considered. Comparisons with an 

independent estimate indicated that accurate predictions of national scale estimates of abundance in 

areas beyond the model training parameter space can be made. In particular, estimates from the 
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method using only a single SAC iteration performed well in terms of both precision and lack of 

bias.  Finer scale predictions of abundance at a 50 km resolution from all three methods were less 

accurate. It is widely acknowledged that model extrapolation is a potential source of error in using 

species distribution and abundance models for predicting species’ responses to future climates 

(Araújo & Guisan 2006; Heikkinen et al. 2006; Mair et al. 2014). The importance of a variable in 

determining the abundance of a species often varies throughout the species’ range, a phenomenon 

referred to as spatial non-stationarity (Finley 2011; Jarzyna et al. 2014). By not fully modelling the 

environmental limits of a species, the complete range in spatial variations in species-environment 

relationships will not be fully captured (Elith, Kearney & Phillips 2010; Kissling et al. 2012; Wisz 

et al. 2013). Given that these models were being applied to conditions distinct from the parameter 

space of model training, it is unsurprising that they could not fully capture localised species-

environment relationships and determine abundance at a fine scale (50 km resolution). Despite 

these reductions in fine scale predictive accuracy, the broad scale performances of these models, as 

indicated by their ability to predict national abundances, in conditions different to those of model 

calibration, are encouraging. Given that it is measures of population’s size and trend that are most 

often used for determining the conservation status of a species (Mace et al. 2008), the ability to 

predict accurately, changes in the abundance of a species at a national scale, will allow those 

species whose conservation status may alter under projected climate change to be identified. 

Furthermore, demonstrating that these methods can provide meaningful predictions in a ‘novel’ 

region may serve to alleviate some of the concerns regarding model extrapolation. Conclusions 

drawn from a broad scale can be viewed with greater confidence, but detailed inference at a finer 

scale may be inappropriate.  

When choosing an appropriate modelling technique, it is important to consider the 

practicality of applying a particular approach (Augustin, Mugglestone & Buckland 1996). Methods 

that incorporate SAC (the model with a single SAC iteration and the model incorporating Gibbs 

sampling), provide significantly better predictions both in terms of precision and reduced bias of 

national estimates of abundance, and hence should be favoured over the method that does not 

include SAC. However, the process of Gibbs sampling is computationally intensive relative to the 

other two methods. The method that accounts for SAC as well as the environmental variables not 

only provides better results than the method that does not account for SAC but also requires less 

computation than Gibbs sampling. 

Here, I have demonstrated that methods that explicitly account for unmeasured ecological 

factors through the use of an SAC term can be used to predict the abundance of species in areas 

with no a priori information. Furthermore, I have demonstrated that these methods improve the 

precision of predictions where species occur at high abundance. Identifying those areas where 

species can occur at high abundance is important for efficient conservation strategies, as it is these 
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populations that are the most likely to persist under climate change (Gibson, Van der Marel & 

Starzomski 2009). Importantly, by using known abundance distributions I have shown that 

meaningful predictions of abundance can be obtained outside of the model building arena. This is a 

significant finding, and should serve to alleviate those concerns regarding the utility of models in 

cases of model extrapolation (Araújo & Guisan 2006; Elith, Kearney & Phillips 2010; Mair et al. 

2014) The capacity to quantify, with confidence, variations in a species’ national population size in 

response to future climatic change can enable the timely implementation of conservation measures 

for those species most at risk from future climate change. 
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Chapter 6 

 The future for European birds: changes in abundance and communities 

  



www.manaraa.com

92 
 

6.1  Abstract 

The distributions and abundances of European birds are already responding to climate change but 

the expected extent and magnitude of these changes under projected climate is unknown. 

Furthermore, species’ responses are highly variable in both their magnitude and rate. Independent 

species responses to climate change could result in changes in community compositions, 

competitive interactions and coexistence. Projections of future population sizes and the consequent 

composition of future communities will inform proactive conservation prioritisation and planning. 

Here, I predict the abundance distributions of 343 species of European breeding birds under current 

conditions and under future climate scenarios. I then use a multivariate approach to quantify the 

potential change in bird communities based on current and future species abundance models. Under 

future climate scenarios, I project that 55% of species will experience significant reductions in their 

total abundance within Europe through the present century, but only 7% of species will experience 

significant increases. Species in the north-east of Europe are projected to experience the greatest 

declines in abundance within Europe. Furthermore, I project substantial changes in the distribution 

of avian communities, with sizeable reductions in the distribution of northern and boreal 

communities and large increases in the area covered by continental and mediterranean 

communities. These results demonstrate the magnitude and variation in species responses to 

climate change, illustrating the complexity of assessing the future impacts of environmental 

change. 
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6.2  Introduction 

It is increasingly important to understand the potential impacts of rapid global climate change for 

individual species, communities and ecosystems (Wiens et al. 2009; Lurgi, López & Montoya 

2012). Species often demonstrate individualistic responses to environmental change due to 

ecological attributes such as dispersal capabilities, abiotic tolerances, and inter-specific interactions 

(Guisan & Thuiller 2005; Wisz et al. 2013). This individuality of responses may lead to changes in 

the structure and composition of the community in an area (Kampichler et al. 2012). New 

combinations of species will result in new species interactions, which may alter community 

dynamics (Stralberg et al. 2009). Species often have complex antagonistic and mutualistic 

relationships, with their fates ultimately dependent upon each other (Kissling & Schleuning 2015). 

Changes in the co-occurrence of species may alter species distributions in ways that cannot be 

predicted by simple distribution modelling (Stralberg et al. 2009). There is a need to identify sites 

at which substantial changes in community composition are likely to occur, and species which are 

most at threat not only from the direct pressures of climatic change, but from the indirect threats 

resulting from the changes in community composition. 

Species distribution models (SDMs) can be used to project future range responses to 

climatic change (Elith et al. 2006). However, determining the conservation status and the priority 

for action of a species often relies upon assessing population sizes and trends (Gregory et al. 2005). 

Population trends are the strongest correlate of species’ extinction risk (O'Grady et al. 2004), and 

significant reductions in a species’ population size often occur prior to reductions in range size 

(Chamberlain & Fuller 2001). By modelling future abundance, potential changes in the 

conservation status of a species can be better assessed, enabling the identification of species at 

greater risk from future climatic change (Pereira et al. 2010; Dawson et al. 2011; Bellard et al. 

2012; Renwick et al. 2012; Mair et al. 2014). Modelling abundance, rather than distribution, 

provides a more comprehensive understanding of community structure. Species abundances are 

very variable within and among communities (Gaston & Blackburn 2008), and mathematical 

evaluations of community types, and community changes, require data on species abundances 

(Magurran 1988). However, despite the wide application of SDMs and some understanding of the 

potential changes in species distributions in response to climatic change (Huntley et al. 2008; 

Barbet-Massin, Thuiller & Jiguet 2012), current projections of future species abundance are limited 

to a few species at local or national scales (Renwick et al. 2012; Johnston et al. 2013). Information 

on likely large scale future population changes is useful for conservation planning and prioritisation 

(Johnston et al. 2015). Furthermore, if the multi-species impacts of climate change are to be 

identified, changes in the abundances of species that co-occur must be considered (Stralberg et al. 

2009). Traditionally, studies of the responses of communities to climatic change have investigated 
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change in composition through species turnover metrics (Bakkenes et al. 2002; Thuiller et al. 2005; 

Bagchi et al. 2013; Baker et al. 2015). Yet these measures do not reflect the extent to which the 

changes in species composition may reflect a broad scale shift in community composition. Under 

future climate change, an area may be occupied by a entirely different avifaunal community, 

which, through changes in species interactions, energy transfer and storage may have significant 

impacts on the wider provision of ecosystem services (Gaston & Fuller 2008; Whelan, Wenny & 

Marquis 2008; Wenny et al. 2011).  

Here, I explore how the abundances of a large number of species are projected to change at 

a continental scale under future climatic change. I investigate to what extent expected changes in 

spatial patterns of abundance will result in broad scale community shifts across Europe. First, I 

model and test the abundance distributions of 343 species of breeding birds across Europe using 

contemporary data. I then use these models to predict the abundance distributions of species under 

projected future climate change.  I also examine the relationship between species ecological traits 

and projected future changes in abundance, to identify whether there are traits that indicate the 

susceptibility of species to climatic change.  Finally, I classify the current broad scale avian 

communities present throughout Europe and determine to what extent these will change with future 

projections of species’ abundance distributions. By comparing the present and future distributions 

of these broad scale communities, we can identify those areas that will experience the greatest 

changes in species assemblages. 

6.3  Methods 

6.3.1  Species data 

Species data are as described in Chapter 2, however, two additional species were excluded due to 

model building limitations. The remaining 343 species will be used in all subsequent analyses in 

this chapter.  

6.3.2  Bioclimatic data 

Current conditions: Mean monthly temperature and precipitation data were obtained from 

Worldclim (Hijmans et al. 2005, http://www.worldclim.org/) for the period 1950-2000, a period 

corresponding to that over which the EBCC bird abundance data were collected. Data were 

obtained at a 2.5’ resolution. This fine scale grid was overlaid with the same 50 x 50 km UTM grid 

for which the species abundance data occurred at. For each UTM grid cell the mean of all included 

Worldclim grid cells for each climate variable was calculated. These climate data were used to 

calculate four bioclimate values for each UTM grid cell: mean temperature of the coldest month; 

growing degree days above 5°; annual precipitation and precipitation seasonality. Through both 
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direct and indirect effects on vegetation, prey, predators, competition or diseases (Gregory et al. 

2009), these variables can limit species ranges and populations. Previously, these variables have 

been widely and successfully used in models to describe both the range extents (Beale, Lennon & 

Gimona 2008; Oliver et al. 2012; Bahn & McGill 2013; Barbet-Massin & Jetz 2014) and 

abundance patterns of European birds (Green et al. 2008; Gregory et al. 2009; Howard et al. 2014).  

Future conditions: Predictions of species abundance were made for two time periods (2041-2060 

and 2061-2080, hereafter referred to as 2050 and 2070) using data from climate projections from 

three general circulation models (GCMs) for four representative concentration pathways (RCPs). 

The four RCPs were developed to represent the full plausible range of anthropogenic greenhouse 

gas emission scenarios (Stocker, Dahe & Plattner 2013). Global temperatures are simulated to 

increase the most by the 2100 under the RCP8.5 scenario (3.7°C increase), followed by RCP6.0 

(2.2°C increase), RCP4.5 (1.8°C increase) and RCP2.6 (1.0°C). The three GCMs (CCSM4, 

HADGEM2-ES,MIROC-ESM-CHEM) were selected to represent the range in projected climates 

in the Fifth IPCC Assessment report (Stocker, Dahe & Plattner 2013) and have all been shown to 

perform well across Europe (Brands et al. 2013; Perez et al. 2014).  Projections of mean future 

climate at a 2.5’ resolution were obtained from Worldclim (Hijmans et al. 2005, 

http://www.worldclim.org/) for each of the 24 future climate scenarios: two time periods (2050 and 

2070), three GCMs (CCSM4, HADGEM2-ES, MIROC-ESM-CHEM), four RCPs (RCP2.6, 

RCP4.5, RCP6.0 and RCP8.5). These climate projections were used to calculate values for the four 

bioclimate values (described above) for each of the UTM grid cells for each of the 24 future 

scenarios. 

6.3.4  Land use data 

Current land use data are as described in Chapter 2. Ideally, species abundance predictions would 

utilise future projections of land use. Such projections, however, are linked not only to forecasts of 

changing anthropogenic activity but also to projected climate. Such land use data are currently 

unavailable for the future climate scenarios used here. Furthermore, habitats are expected to change 

at a much slower rate than climate, with projections rarely showing any spatial trends at a large 

spatial scale (Barbet-Massin, Thuiller & Jiguet 2012; Martin et al. 2013). Therefore, when 

predicting future species abundances, I assume that coarse-scale land uses will remain unchanged 

during the current century.  

6.3.5  Species abundance modelling 

Using the procedure to model and predict spatial abundance using only a single iteration of SAC 

outlined in Chapter 5, I modelled and predicted the abundance of the 343 species for each UTM 

grid cell. Predictions of abundance were made for the recent time period (1950-2000) and for each 
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of the 24 combinations of future climate scenarios (two time periods x three GCMs x four RCPs). 

This provided estimates of both recent and future abundance for all UTM grid cells, including those 

areas with only qualitative estimates of recent abundance in the EBCC atlas, allowing a full 

comparison with future predictions. Hereafter, projections made to the recent time period (1950-

2000) will be referred to as present data predictions.  

Model performance was assessed using both AUC and Cohen’s weighted Kappa (Landis & 

Koch 1977). In contrast to AUC, Cohen’s weighted Kappa does not weight all errors equally 

(Lobo, Jimenez-Valverde & Real 2008) with the greatest weight applied to the most incorrect 

classification. This provides a fairer assessment of the performance of a model when predicting 

ordinal data, as is done here (Ben-David 2008). The ability of the models to correctly predict recent 

abundance was assessed by comparing predicted abundance across the UTM grid cells against 

recorded quantitative abundance for each of the 343 species (Hagemeijer & Blair 1997).  

6.3.6  Assessing effects on individual species 

European-wide estimates of total population sizes were calculated for each of the 343 species by 

combining the median estimate of abundance from across the ten models for each UTM grid cell 

across Europe. This was done for both recent estimates (for the period 1950-2000) and separately 

for each of the 12 climate projections for both 2050 and 2070. By comparing the future estimates of 

total abundance with recent estimates, the proportional effect of future climate change on the total 

abundance of individual species could be evaluated. 

To test for relationships between species’ specific traits and the effect of climatic change 

on their total European abundance, I used a phylogenetic generalised least squares (PGLS) 

approach (Freckleton, Harvey & Pagel 2002; Freckleton 2009) and model selection. Species traits 

were taken from BirdLife International and NatureServe (2012) and included mean body mass, 

generation length, primary habitat association, migratory strategy and mean and maximum natal 

dispersal distances. European range size, a measure of the geographic scale over which the drivers 

of abundance operate, was also included, calculated as the proportion of UTM grid cells that were 

occupied (from Hagemeijer & Blair 1997). The mean latitude and longitude of each species range 

were also included as range traits. I used a phylogeny based on a consensus tree derived from 5000 

trees sub-sampled from the global phylogeny of Jetz et al. (2012). For all subsets of the global 

model, I compared the Akaike information criterion (AIC) corrected for small sample size (AICc), 

selecting all models within six ΔAICc of the best performing model. To avoid selecting overly 

complex models, all models with a better-performing simpler nested model were disregarded 

(Richards 2008).  Diagnostic plots were examined for the final model to check for 

heteroscedasticity, non-normal errors and outliers. Phylogenetic analyses were carried out in the 

‘caper’ package in R (Orme et al. 2012; R Development Core Team 2012). 
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I also investigated spatial variations in the percentage change from the present day to the 

future in the total number of individuals, of all species, occurring in a cell. For both 2050 and 2070 

the median projected number of individuals from across the 12 climate projections (3 GCMs x 4 

RCPs) were taken for all species present within a UTM grid cell. I then calculated the percentage 

change in the total abundance of all species in a cell between present day predictions and the future 

estimate for both 2050 and 2070. To test for spatial variation in the percentage change in the total 

abundance of species, an ordinary least squares regression (OLS) was used to examine the 

relationship between the percentage change in the total abundance of all species in a UTM grid cell 

between current conditions and both 2050 and 2070, against the latitude and longitude of that cell.  

6.3.7  Species turnover 

To characterise geographic patterns of changes in community composition, species turnover within 

each UTM grid cell over time was calculated. For each cell we calculated the Bray-Curtis 

dissimilarity metric (Bray & Curtis 1957) between the current and all potential future community 

compositions, based on the predicted abundance for all species simulated to occur within that cell. 

To test for spatial variation in species turnover, an OLS regression was again used to examine the 

relationship between the Bray-Curtis dissimilarity metric of a UTM grid cell against the latitude 

and longitude of that cell. 

6.3.8  Community composition analysis 

The median current day prediction of species abundance for all 343 species across Europe was used 

to group cells into communities. For each pair of UTM grid cells the Bray-Curtis dissimilarity 

metric was calculated based on the current predicted abundance of all species occurring with the 

cell. Communities were defined using a hierarchical agglomerative cluster analysis, whereby the 

Bray-Curtis dissimilarity matrix was used to group current cells. Cells were grouped into 10 

different communities to represent broad scale species assemblages and ecological sub-regions 

(Stralberg et al. 2009). For each UTM grid cell, for each of the 12 projected climate scenarios 

(three GCMs x four RCP) for both the 2050 and 2070 projections, I identified the modern day cell 

with the most similar community according to the Bray-Curtis dissimilarity metric. The community 

of the future day cell was then classified by the community classification of the most similar 

present day cell. These community analyses were carried out using the ’vegan’ package in R (R 

Development Core Team 2012; Oksanen et al. 2015).  
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6.4  Results 

6.4.1  Model Evaluation 

RF models (with the SAC term) of the abundance of the 343 species of European breeding birds 

generally performed well: the ten models fitted for each species had a mean AUC across all species 

of 0.96 (S.D.±0.04). An AUC of >0.9 reflects a model with good discrimination, whilst a model 

with an AUC of >0.7 has useful discrimination (Franklin 2010). The mean values of Cohen’s 

weighted kappa across the ten models for each species indicated that the models fitted the observed 

abundance categories for the UTM grid cells well (Landis & Koch 1977): mean weighted Kappa 

was 0.75 (S.D.±0.15, Figure 6.1). Estimates of the total abundance of species across Europe 

showed close agreement with estimates based on the observed UTM grid cell abundance (R
2
 = 

0.92, Figure 6.2). 

 

 

Figure 6.1: Current abundance predictions. Bars represent the mean proportion of predictions for 

each abundance class averaged across all 343 species. Performance was good with a mean 

weighted Cohen’s Kappa score of 0.75 (S.D.±0.15; (Landis & Koch 1977)). N values indicate 

number of observed cells within each abundance class.. 
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Figure 6.2: Median predictions of observed against predicted total current abundance for 343 

species of breeding birds across their entire European range (R
2
 = 0.91). Each point represents the 

predicted current median total abundance against the observed total abundance. Error bars 

represent the 95% quantiles. The black line indicates a one to one relationship, while one order of 

magnitude from this relationship is indicated by the grey area. 

6.4.2  Individual Species 

Models indicate that, by 2070, the majority of species (73% of the 343 species analysed) will 

experience some decline in their total European abundance (i.e. negative percentage growth in 

median projected abundance across all GCMs, RCPs and model iterations, from the present to 

2070). Species’ abundances were projected to decrease by 2070 by 32% on average. However, 

there was a large degree of variation among species, with population changes ranging from a 98% 

decline to a 118% increase (Figure 6.3). In addition to between species variation, there was also 

substantial variation for each species in relation to the different GCMs, RCPs and model iterations. 

Nonetheless, there was directional consensus in the change in total abundance (i.e. the 95% 

quantiles across all abundance predictions for a species did not overlap 0; filled portions of the bars 

on Figure 6.3) for 62% of species (212 of 343 spp.). Only 7% of species (25) were consistently 
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projected to increase in abundance by 2070, whilst 55% (187) of species showed a consistent 

decline in abundance. This should result, on average, in a total decline of 1.08 billion birds by 

2050, with a further loss of 320 million birds by 2070. This figure is projected to vary considerably 

between different RCP scenarios (Table 6.1), with the greatest reductions predicted for the most 

extreme climate scenario (RCP8.5).  

Several species-specific traits are related to the likelihood of a change in abundance in 

future. The PGLS model of the role of traits on projected abundance changes retained four 

variables: mean latitude and longitude of the European range, current estimated European 

population size and a species’ primary habitat association (Table 6.2). The model explained 49% of 

variation in the percentage changes in the total abundance of species. The mean latitude and 

longitude of a species’ European range along with its current European population size were all 

negatively related to projected abundance change. By contrast, abundance was mostly unaffected 

by a species’ primary habitat association, with the exception of species associated with boreal and 

temperate forests, for which total abundance declined significantly more than other species. This 

was true also, but less significantly (p=0.07), for species associated with montane grassland.   

A plot of the percentage changes in the median projected total abundance of all species 

present within a UTM grid cell between both 2050 and 2070 and the present day, showed clear 

spatial patterns. Areas identified as demonstrating substantial increases in the number of 

individuals projected to occur within a cell in the future included parts of northern Scandinavia, 

mountainous regions across central and Eastern Europe and a large part of the Mediterranean 

(Figure 6.4). The OLS regression analysis of the percentage change in total abundance for a UTM 

grid cell and the latitude of that cell revealed a significant negative relationship for both 2050 

(F2811,1= 46.51, p<0.01, Figure 6.4a) and 2070 (F2811,1= 195.1, p<0.01, Figure 6.4b). A significant 

negative relationship was also present between the percentage change in total abundance in a UTM 

grid cell and the longitude of that cell, for both 2050 and 2070 (2050: F2811,1= 69.38, p<0.01, Figure 

6.4a; 2070: F2811,1=98.3, p<0.01, Figure 6.4b).  
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Figure 6.3: Projected impacts of climate change on the total abundance of 343 species of European 

breeding birds. The histograms represent the distribution of median change across all combinations 

of GCMs and RCPs in total abundance between current day and A) 2050 and B) 2070. The height 

of each bar is the number of species that show the percentage change in their total population as 

indicated by the x-axis. The filled portion of each bar represents the proportion of species that are 

likely to demonstrate the direction of change indicated (i.e. the 95% quantiles of the abundance 

projections across the model iterations, GCMs and RCPs did not overlap 0). The open portion of 

the bars represent those species for which the direction of change indicated was not significant.   
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Table 6.1: Total estimates of European population size (number of individuals) across all 343 

species (with 95% quantiles) for present day, 2050, and 2070 

          Absolute change Proportional 

change 

  

Present 2050 2070 Present - 

2050 

Present - 

2070 

Present - 

2050 

Present - 

2070 

rcp2.6        

 Median 3.16 x 10
9
 2.24 x 10

9
 2.19 x 10

9
 -9.1 x 10

8
 -5.10 x 10

7
 -0.29 -0.31 

 Q02.5 2.88 x 10
9
 1.50 x 10

9
 1.49 x 10

9
 -1.4 x 10

9
 -8.00 x 10

6
 -0.48 -0.48 

 Q97.5 3.50 x 10
9
 3.16 x 10

9
 3.18 x 10

9
 -3.5 x 10

8
 2.00 x 10

7
 -0.1 -0.09 

rcp4.5        

 Median 3.16 x 10
9
 2.06 x 10

9
 1.91 x 10

9
 -1.10 x 10

9
 -1.50 x 10

8
 -0.35 -0.4 

 Q02.5 2.88 x 10
9
 1.38 x 10

9
 1.28 x 10

9
 -1.50 x 10

9
 -9.90 x 10

7
 -0.52 -0.56 

 Q97.5 3.50 x 10
9
 3.03 x 10

9
 2.94 x 10

9
 -4.8 x 10

8
 -8.60 x 10

7
 -0.14 -0.16 

rcp6.0        

 Median 3.16 x 10
9
 2.13 x 10

9
 1.77 x 10

9
 -1.00 x 10

9
 -3.60 x 10

8
 -0.33 -0.44 

 Q02.5 2.88 x 10
9
 1.41 x 10

9
 1.16 x 10

9
 -1.50 x 10

9
 -2.60 x 10

8
 -0.51 -0.6 

 Q97.5 3.50 x 10
9
 3.09 x 10

9
 2.91 x 10

9
 -4.1+08 -1.80 x 10

8
 -0.12 -0.17 

rcp8.5        

 Median 3.16 x 10
9
 1.81 x 10

9
 1.42 x 10

9
 -1.30 x 10

9
 -3.80 x 10

8
 -0.43 -0.55 

 Q02.5 2.88 x 10
9
 1.16 x 10

9
 8.9 x 10

8
 -1.70 x 10

9
 -2.70 x 10

8
 -0.6 -0.69 

  Q97.5 3.50 x 10
9
 2.82 x 10

9
 2.55 x 10

9
 -6.8 x 10

8
 -2.70 x 10

8
 -0.19 -0.27 

  



www.manaraa.com

103 
 

Table 6.2: Species traits and the abundance responses to future climate change.  Estimated 

coefficients from AIC selected phylogenetically corrected GLS regression models of the 

proportional change in total abundance between the current day and 2070. P-values significant 

at the 5% levels are shown in bold. 

    Effect 

size 

S.E.  t-

value 

p 

Intercept (habitat generalists) 195.54 27.44 7.13 <0.01 

Primary habitat association: 

     1. Coastal -8.69 8.39 -1.04 0.30 

 2. Inland wetland -0.06 5.07 -0.01 0.99 

 3. Tundra, mires and moorland 7.06 7.87 0.90 0.37 

 4. Boreal and temperate forest -25.48 5.84 -4.36 <0.01 

 5. Mediterranean 17.75 10.86 1.64 0.10 

 6. Agriculture and grassland -0.34 5.20 -0.07 0.95 

 7. Montane grassland -23.07 12.51 -1.84 0.07 

Mean longitude of European range -0.90 0.25 -3.62 <0.01 

Mean latitude of European range -3.44 0.35 -9.85 <0.01 

Current European population size -5.68 2.00 -2.84 <0.01 

Lambda = 0.98. Residual standard error: 10.92 on 248 degrees of freedom.  

Adjusted R-squared = 0.49. 
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Figure 6.4: Percentage change in the total abundance of all species present in a UTM grid cell 

between current day abundance estimates and the median projection of abundance across all 

combinations of GCMs and RCPs for a) 2050 and b) 2070. 
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6.4.3  Species turnover 

The degree of species turnover projected between the present day and 2070 is significantly greater 

than between 2050 and the present day (t2812=-82.48 p<0.01).  Furthermore, there are clear spatial 

patterns in the degree of species turnover across Europe (Figure 6.5). A regression analysis of the 

Bray-Curtis dissimilarity metric for a UTM grid cell and the latitude of that cell revealed a 

significant positive relationship for both 2050 (F2811,1= 1085, p<0.01, Figure 6.5a) and 2070 

(F2811,1= 1587, p<0.01, Figure 6.5b). A significant positive relationship was also present between 

the Bray-Curtis dissimilarity metric of a UTM grid cell and the longitude of that cell, for 

dissimilarity to both 2050 and 2070 (2050: F2811,1= 283.5, p<0.01, Figure 6.5a; 2070: F2811,1= 236.1, 

p<0.01, Figure 6.5b). This indicates that species turnover will occur at a greater rate in the northern 

and eastern regions of Europe, with a band of highest turnover running across England, Denmark 

and the Baltic states (Estonia, Latvia, Lithuania).There is also a clear pattern of reduced turnover 

projected in regions bordering the northern Atlantic (Ireland, Scotland, Iceland and coastal 

Norway). 

6.4.4  Community composition 

Ten community groups were identified from the median present day estimates of species 

abundance across Europe (Figure 6.6a). The most widely distributed community for present day 

conditions, occupying 30% of Europe, which I termed sub-continental nemoral, covered most of 

central Europe and southern England. The next most extensive community was a mediterranean 

community followed by a boreal-nemoral grouping, occupying 18% and 13% of Europe 

respectively (Figure 6.6). Substantial changes in the extent of the area covered by these various 

communities were projected under the different climate scenarios. The results presented are for the 

HADGEM2-ES GCM and RCP6.0 climate scenario which is considered a “middle of the road 

scenario”; however, the geographic pattern in these community changes was consistent between the 

three GCMs and four RCPs.  In particular, the area of Europe predicted to be occupied by a 

continental-nemoral community was predicted to increase in extent by 87% between the present 

day and 2050 and by 100% between the present day and 2070. The extent of mediterranean 

communities was also predicted to increase substantially from the present day, with a 35% increase 

by 2050 and a 78% increase by 2070. Conversely the area covered by some communities was 

projected to decrease considerably. Northern-boreal communities, for example, were projected to 

decrease in the amount of Europe that they occupy by 66% and 79% between the present day and 

2050 and 2070, respectively. The other notable reduction in the area covered by a community was 

for boreal-nemoral communities, with reductions in the area occupied between the present day and 

2050 and 2070 of 64% and 75% respectively (Figure 6.6). 

  



www.manaraa.com

 

1
05

 

 

Figure 6.5: Predicted species turnover based on mean predicted species abundance distributions from all climate models. Species turnover was calculated as 

the Bray-Curtis (BC) dissimilarity between current avian communities and projected bird communities in a) 2050 and b) 2070. 
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Figure 6.6: Changes in broad scale community classification. a. represents current community classifications, b. community classifications in 2050 and c. 

community classifications in 2070. Current community classifications are based on those groups identified during the hierarchical clustering analysis for 10 

community groups across Europe. Future community classification for each grid cell is based on the classification of the most similar current grid cell 

according to Bray-Curtis. Predictions of future communities are based on mid-range projections from the HADGEM2-ES GCM and RCP6.0. Classification 

names for community types are based broadly on the community names used by Huntley et al. (2007). However, this naming does not necessarily imply any 

similarity in terms of either the species composition or diagnostic species (as results are based on abundance data, and a different classification approach, 

whereas Huntley et al. used only presence-absence data). 
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6.5  Discussion 

The populations of European birds are declining at an alarming rate (Inger et al. 2014). However, 

until now, estimates of the potential impacts of projected climatic change on species abundance 

have been lacking. Here, and for the first time, I have projected the abundance of a large number of 

species across Europe. Furthermore, the potential implications of climate change have been 

quantified for both individual species and for community composition. I have shown that European 

birds are likely to experience precipitous declines in their populations over the coming century. 

Worryingly, we estimate that, by 2070, there will be 1.4 billion fewer birds in European, which 

equates to a 40% reduction in avian abundance. However, we have also shown substantial 

differences in the potential responses of different species to changes in the climate. Over half the 

species analysed (55%) are projected to be extremely likely to decline significantly in abundance 

across Europe by 2070, whilst only 7% of species were extremely likely to show significant 

increases in abundance over the same period. Here, we discuss how these results compare with 

previous studies and the potential future impacts of climate change on European birds in light of 

three key findings: (1) expected impacts of climate change on species; (2) expected spatial 

variations in species turnover; and (3) expected large scale shifts in community composition. 

6.5.1  Expected impacts on individual species 

In addition to the estimates of changes in total avian abundance, these projected population trends 

were linked to a range of ecological characteristics. In particular, those species that are more 

abundant at present are projected to suffer greater population declines than rare species. This 

finding is consistent with those of Inger et al. (2014). They found that more common species 

declined at a faster rate than less abundant species between 1980 and 2009, a pattern that according 

to the results presented here, will not change with future climate change. Inger et al. (2014) 

postulated that the potential cause of this trend is the differences in conservation practices targeted 

towards rare and common species. As conservation management tends to focus on increasing the 

numbers of rare species, management often operates at local scales, through the establishment of 

protected areas. This may have mitigated the impacts of observed climate change on rare species, 

but has offered little protection for more common species (Hoffmann et al. 2010). However, the 

demonstration that under projected climate change the proportional abundance of more common 

species will continue to decline to a greater extent than rarer species, suggests that more common 

species are more vulnerable to the effects of climate change. As more abundant species are 

typically more widespread, their numbers are linked to habitat quality at a wider landscape scale, 

rendering them more vulnerable to the effects of widespread climate change (Gaston & Fuller 

2008). A substantial body of evidence demonstrates the significance of common birds for the 



www.manaraa.com

 

108 
 

delivery of ecosystem services, such as decomposition, seed dispersal, pollination and pest control 

(Gaston & Fuller 2008; Whelan, Wenny & Marquis 2008; Wenny et al. 2011) . The decline of 

more common birds may have serious knock-on effects on ecosystem structure and function (Inger 

et al. 2014).  

Changes in abundance are also related to a species’ primary habitat association. In 

particular, we project significant declines in the abundances of boreal and montane species, and 

substantial increases in the abundances of Mediterranean species. The environmental requirements 

of Mediterranean species reflect conditions towards the warmer end of the temperature gradient 

across Europe. As temperatures across Europe increase, a greater breadth of potential niches for 

these species will become available, resulting in population gains. Furthermore, conditions across 

southern Europe will likely more resemble those of North Africa (IPCC 2014). Given the ranges of 

many of these Mediterranean species extend into North Africa; climate suitability across southern 

Europe will likely further improve for these species, increasing their abundance. Conversely, the 

requirements of boreal and montane species reflect conditions at the colder end of the temperature 

gradient across Europe. As temperatures increase, the availability and suitability of current habitats 

for these species will be reduced, and the breadth of potential niches will narrow within Europe 

(Virkkala et al. 2008). Changes in the availability and suitability of potential niches at high and low 

latitudes may serve to explain the significant negative relationship between latitude and changes in 

abundance. 

Substantial increases are projected in the number of individuals occurring in mountainous 

regions and some parts of Scandinavia and the Mediterranean. Interestingly, and as reported in the 

general introduction (section 1.3.1), these are also the areas where observed temperature changes 

have been greatest (Haylock et al. 2008). Furthermore, in comparison to other areas of Europe, 

these areas are all projected to experience greater than average temperature increases under 

projected climate change (IPCC 2014). Warming at high latitudes and elevations will increase the 

suitability of an area for those species previously restricted to lower latitudes and altitudes, aiding 

colonisation (Walther et al. 2002). Altitudinal and latitudinal shifts in species distributions have 

been widely reported (Hickling et al. 2006; Devictor et al. 2008; Zuckerberg, Woods & Porter 

2009; Chen et al. 2011; Virkkala et al. 2014), along with increases in species richness in cool-

temperate regions (Pauli, Gottfried & Grabherr 1996; Menendez et al. 2006; Walther 2010). Yet, 

this latitudinal gradient in changing abundance has never before been projected for a large number 

of species at a continental scale. Changes in the total abundance of individuals in an area will likely 

have impacts on the structure and function of an ecosystem, such as by changing the flux of energy 

and materials through an ecosystem (Chapin III et al. 2000; Inger et al. 2014).  
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6.5.2  Spatial variation in species turnover 

Significant spatial variations in species turnover indicate that the extent of change in community 

composition observed throughout Europe over the next century will be geographically diverse, with 

the greatest changes in the north. As species track climate changes, previously more southerly 

species will be increasingly present in more northerly communities. The low level of species 

turnover across the southern regions of Europe is not what would be expected from some 

explanations for spatial variations in species turnover (Koleff, Lennon & Gaston 2003). In 

particular, it has been hypothesised that species turnover should increase at lower latitudes where 

species tend to have smaller ranges (Gaston et al. 2007). Areas of the Mediterranean are 

increasingly forecast to be colonised by more southerly species, such as those primarily associated 

with North Africa (Barbet‐Massin, Thuiller & Jiguet 2010; Barbet-Massin, Thuiller & Jiguet 2012). 

These species, however, are not accounted for in this analysis and their encroachment into Europe 

will not be reflected in these measures of species turnover. This may artificially lower species 

turnover rates in the Mediterranean regions.  

6.5.3  Shifts in broad scale community composition 

Frequently, analyses of the impacts of climatic change on species highlight the potential for 

individualistic species responses to result in variations in community composition and structure 

(Walther et al. 2002; Stralberg et al. 2009; Walther 2010). Here, we have demonstrated that these 

individualistic responses can lead to community-wide changes in the species occupying an area. 

For instance, across large parts of central Europe and into southern England avian communities are 

predicted to switch from a sub-continental nemoral community to something more akin to a current 

mediterranean community. Similarly, large parts of Eastern Europe are predicted to switch from a 

boreal-nemoral community to a continental or sub-continental community by 2070. The 

consequences of avifaunal shifts of this magnitude and extent are poorly understood, but will 

include profound changes in ecosystem functioning and biodiversity (McCarty 2001; Walther 

2010). As demonstrated here, the responses of organisms to climate warming are unlikely to be 

uniform, a trend likely to extend across trophic levels and communities (Voigt et al. 2003; Devictor 

et al. 2008). The ensuing mismatch in species interactions could further exacerbate population 

fluctuations, changing the importance of top-down and bottom-up effects, and modifying trophic 

cascades (Harrington, Woiwod & Sparks 1999; Lenoir et al. 2008; Hoekman 2010; Kratina et al. 

2012). This, in turn, could result in further community instability and loss of biodiversity (Seifert et 

al. 2014). For example, temperature related community shifts have been observed in local 

populations of birds, reptiles and amphibians in the highland forests of Costa Rica. With 

temperature increases reducing the frequency of dry season mist, communities have shifted from 

‘cloud forest’ to ‘premontane’ and many associated species including the endemic golden toad 
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(Bufo periglenes) have become locally extinct (Pounds, Fogden & Campbell 1999). Intertidal 

communities appear to be particularly susceptible to community wide shifts in response to oceanic 

warming. Invertebrate communities of the rocky intertidal zone show increasing replacement of 

species with those previously associated with lower latitudes (Barry & Baxter 1995). The 

associated changes in species abundances and interactions have had a cascade of indirect effects, 

altering the flow of resources through a system, impacting populations of predators and host 

species.  Interestingly, here we found that coastal communities appear to be the most stable under 

projected climate change. Previously, we found that the abundances of these species are strongly 

determined by land use (Chapter 3, Howard et al. 2015), so may not be as strongly influenced by 

climate changes as other communities. Combined with the specific challenges and subsequent 

adaptations required to inhabit coastal environments (Scholander 1955), we would expect that only 

a limited number of species have the capacity to colonise these areas, minimising overall 

community change.  

6.5.4  Future directions  

The projections of abundance presented here only account for future changes in climate and not 

other environmental factors, such as land use. Land use changes are known to induce changes in 

the abundance and distribution of birds (Jiguet et al. 2007; Vallecillo, Brotons & Thuiller 2009; 

Barbet-Massin, Thuiller & Jiguet 2012); therefore, by not accounting for land use change here, 

these estimates of potential abundance change are likely to be conservative. Current projections of 

land use change have been shown to make limited impact when assessing large-scale impacts of 

environmental change (Martin et al. 2013). New methods are being developed to improve the 

spatial resolution and accuracy by which habitat surfaces are calculated (Verburg, Neumann & Nol 

2011; Rounsevell et al. 2012). With improvements in land use change projections, future studies 

will be able to refine the projections of abundance presented here and assess the impacts of climate 

change on these species with a greater degree of accuracy.  

Until recently, few studies have explored the impacts of climate change on diversity 

beyond changes in species richness. Information on changes in the functional (Petchey & Gaston 

2002) and phylogenetic diversity (Rolland et al. 2012; Winter, Devictor & Schweiger 2013) of a 

community, may provide greater insight into the resilience and resistance of ecosystems to 

environmental change. In addition, it is  likely that climate change may elicit different responses 

from different levels within a community, altering species interactions and the transfer of resources 

through an ecosystem (Devictor et al. 2010). Information on the biomass in a community is often 

preferred by ecologists over information on abundance (Henderson & Magurran 2010). As 

metabolism scales directly with body mass, biomass is assumed to provide a measure of energy 

flow  and resource use in a system (Brown et al. 2004). Therefore, information on biomass and 
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how it is apportioned between the different levels and guilds of a community, can provide very 

different insights into community structure and how it may alter with climate change, to those 

indicated by numbers of abundance (Harvey & Godfray 1987; Pagel, Harvey & Godfray 1991; 

Magurran 2004; Brose et al. 2012; Magurran & Henderson 2012).   

6.5.5  Conclusions 

Here, for the first time, I have projected the abundance of European birds under scenarios of future 

climate change. Despite significant variations in responses across species and communities, and a 

promising outlook for species from southern Europe, overall I have predicted substantial declines, 

especially pronounced for those species currently present in northern Europe. Importantly, I have 

shown that the most common species across Europe will experience the most severe declines in 

abundance. This will have severe knock-on effects on ecosystem services and functioning (Inger et 

al. 2014).  Yet, the identification of the species and areas projected to experience the greatest 

changes under climate change will be helpful in developing adaptive management and conservation 

strategies (Hannah et al. 2007) , hopefully ameliorating projected declines.   
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Chapter 7 

General Discussion 
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7.1  Synthesis 

In this thesis, I investigated the large scale drivers of abundance, and the potential responses of 

species’ abundances to future climate change.  To do that, I examined variations in the abundances 

of European birds in relation to climate, land-use and biotic factors. This work demonstrated that 

climate is a more important determinant of the abundance of species at a landscape scale than are 

other abiotic and biotic factors. I showed that this relationship varies spatially, with the importance 

of climate varying both between species and across species distributions. However, this work also 

highlighted the importance of considering the role of other biotic and abiotic factors, such as land 

use and a species’ migratory tendencies, in determining species abundance. I demonstrated the 

large scale impacts that climate change is likely to have on the abundance of species and the 

subsequent implications for community composition. Importantly, the significant variation in 

species responses to environmental change that I demonstrated, both between species and spatially, 

emphasises the complexity of assessing the impacts of future climate change. Alongside these 

ecological findings, I have provided new methodological insights, particularly into the use and 

application of abundance modelling techniques. 

The main findings in this thesis have both broad implications for future ecological studies and 

application in planning conservation strategies.  I will discuss these in light of three key points: 

1) The importance of informative data for ecological studies 

2) The benefits and challenges of modelling spatial abundance data, 

3) The considerations that need to be addressed when projecting changes under future climate. 

7.1.1  The importance of informative data for ecological studies 

Throughout this thesis, I have utilised data on species abundances to help improve understanding of 

what drives variations in population sizes (Chapter Two,   Howard et al. 2015; Chapter Three) and 

to assess the potential impacts of future climate change (Chapter Five and Six). I have shown that, 

by studying variations in abundance, not only can the importance of both abiotic and biotic factors 

in driving population sizes be better assessed, the fine-scale variations in the quality of a habitat for 

a species can be better distinguished, something discussed in greater detail below. Despite the 

improvements in our understanding of species-environment relationships that can be achieved 

through using abundance data, until recently very few studies attempted to use multi-species 

abundance datasets (but see Renwick et al. 2012; Johnston et al. 2013), focussing, instead, on 

presence absence-data. However, as discussed throughout this thesis, it is population size and 

trends that are used for assessing the conservation status of a species (International Union for 
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Conservation of Nature 2001; Mace et al. 2008) providing us with a better understanding of a 

species’ susceptibility to climate change.  Population size is the strongest correlate of extinction 

risk (O'Grady et al. 2004) and, often, significant declines in abundance may occur before any 

reduction in range size is observed (Chamberlain & Fuller 2001). Hence, studies of abundance data 

not only provide a better understanding of ecological relationships than studies of presence-absence 

data, their output has direct application for conservation planning (Johnston et al. 2015). 

Given the number of global data sets that already contain measures of species relative 

abundance, the lack of large scale studies on species abundance is surprising (Robertson, Cumming 

& Erasmus 2010). In addition to the EBCC atlas of European birds (Hagemeijer & Blair 1997) 

used throughout this project, abundance data exist for a wide range of taxa. These come in the form 

of both periodic atlases and annual census data for birds (Sauer et al. 2012; Balmer et al. 2013), 

butterflies (Pollard & Yates 1994), and plankton (Barnard et al. 2004). Additionally, some less 

traditional sources of information on the relative abundances of species may be used for studying 

variations in populations. For example, fishery data have been used to assess spatial and temporal 

patterns in the abundance of some marine species (Wang et al. 2003; Hedger et al. 2004). Hunting 

bag data have been used to assess the spatial abundance patterns of many game species including 

Wild Boar (Sus scrofa) (Acevedo et al. 2014), Red Deer (Cervus elaphus), Fallow Deer (Dama 

dama) and Roe Deer (Capreolus capreolus) (Imperio et al. 2010) and Red Grouse (Lagopus 

lagopus scotica) (Thirgood et al. 2000; Cattadori et al. 2003). Pellet and scat counts have also been 

shown to provide accurate estimates of relative abundance of Roe Deer (Bouyer et al. 2015), Wild 

Boar (Acevedo et al. 2014) and multiple fox species  including Pampas Fox (Pseudalopex 

gymnocercus) and San Joaquin Kit Foxes (Vulpes macrotis mutica) (García & Kittlein 2005; Smith 

et al. 2006). 

The ecological applications of both current and future abundance data are extensive. From 

a management perspective, forecasts of species abundance, both under environmental change but 

also across currently unmonitored areas, will be invaluable for conservation planning (Johnston et 

al. 2013; Johnston et al. 2015). For effective species level management, it has been suggested that 

actions should be focussed upon populations large enough to have low extinction risk (McCarthy, 

Thompson & Possingham 2005; McCarthy, Thompson & Williams 2006; Bottrill et al. 2008; 

McCarthy et al. 2011). Spatial predictions of future abundance will enable not only those species 

most at risk to be identified, but those areas where community change will be greatest. This will 

allow for the establishment of future protected areas in the most effective locations, and will aid the 

optimal allocation of resources among current protected areas. From a research perspective, multi-

species spatial abundance data can inspire theoretical exploration and investigation. For example, 

abundance data may allow predictions to be made related to changing composition of food-webs. 

Abundance data can be used to estimate biomass, which, when paired with known trophic links 
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between species, could be used to estimate fluxes and stocks of energy through a community 

(Brown & Gillooly 2003). With this understanding, a link may be established between biodiversity 

theory, the endeavour to understand what determines the number of species that can co-exist in an 

ecosystem, with metabolic theory, the endeavour to explain the structure of an ecosystem in terms 

of energy flux. Alternatively, spatial abundance data can be used to better parameterise population 

models. By combining population models with associated environmental drivers, it is possible to 

determine the extent to which stochastic fluctuations in the environment can drive growth rates or 

extinction probabilities of a species (Dennis, Munholland & Scott 1991; García & Kittlein 2005). 

Furthermore, integrating spatial abundance data with physiological knowledge allows for a more 

robust understanding of species-environment relationships (Kearney & Porter 2009; Ehrlén & 

Morris 2015). Mechanistic or process-based models relate the dynamic effects of climatic 

parameters on abundance and key population parameters, such as fecundity and mortality (Dawson 

et al. 2011). These models can predict the distribution and abundance of a species in response to 

changes in climate, land use, and biotic processes like competition (McMahon et al. 2011; Gillson 

et al. 2013).  Given the extensive range of analyses that informative baseline abundance data sets 

enable, and the greater direct application that knowledge of abundance has for conservation 

practitioners, it seems intuitive to move towards increased collection of abundance data. 

7.1.2  The benefits and challenges of modelling spatial abundance data 

Throughout this study I have used random forests, a classification based regression tree analysis, to 

model species abundance distributions. These models have constantly shown excellent 

performance, demonstrating both high levels of predictive accuracy and explanatory power. Our 

results corroborate previous studies on species distributions that show that random forests, along 

with other classification tree based analyses, consistently outperform more established statistical 

modelling techniques (Prasad, Iverson & Liaw 2006; Cutler et al. 2007; Marmion et al. 2009). By 

modelling species abundance rather than distribution, we have been able to make significant 

advances in our understanding of species-environment relationships. Initially, I demonstrated 

significant improvements in predictions of the distribution and abundance of species, through the 

use of more informative data. Previous attempts to improve species distribution models (SDMs) 

had focussed primarily on advancing their statistical bases (Araújo & Guisan 2006; Austin 2007; 

Higgins, O'Hara & Römermann 2012) and, despite investigating the relative value of presence-only 

and presence-absence data (Brotons et al. 2004; Elith et al. 2006; Pearson et al. 2006), the value of 

abundance data had not been assessed. Chapter Two (Howard et al. 2014) demonstrated that even 

by using coarse-scale abundance data, significant improvements in the accuracy of species 

distribution models can be achieved. By training models on abundance data, instead of presence-

absence data, we were better able to identify the relative suitability of a habitat for a species. This 
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may be attributable to the greater statistical power of being able to model changes in abundance 

throughout the species range and not just at the distributional limits, as is the case when modelling 

presence-absence data (Johnston et al. 2013). Furthermore, with these refinements and the ability to 

distinguish fine-scale variations in habitat quality, I was able to more accurately assess the relative 

importance of climate and land use for a species in Chapter Three (Howard et al. 2015). This 

increased level of model refinement and ability to discriminate between fine scale variations in 

habitat quality, also proved beneficial when using these models to project across alternative regions 

and time periods, as demonstrated in Chapters Five and Six.  

The greater depth of information that can be obtained from using random forests to model 

abundance is, to some extent, counterbalanced by more practical considerations. Utilising the 

conditional inference framework to allow models to account for correlations in predictor variables 

(as done in this thesis) is computationally intensive and often requires parallel computing 

techniques (Strobl, Malley & Tutz 2009). Furthermore, depending on the sample size and the 

number of classification trees that the user wishes to fit, random forest models can require large 

amounts of memory (Gislason, Benediktsson & Sveinsson 2006). This computational intensity 

became problematic in Chapter Five, preventing large scale assessment of the performance of the 

Gibbs sampler. The most significant downfall of classification based methods, however, is the lack 

of clarity regarding the underlying relationships between the dependent and independent variables. 

Often described as “black-box” type classifiers, random forest models make no assumptions 

regarding the underlying distribution of the data, allowing for non-linear relationships (Breiman 

2001a; Cutler et al. 2007). Therefore, obtaining model parameter estimates, which is 

straightforward for methods such as generalised linear models and generalised additive models, is 

difficult (Breiman 2001a; Chen, Liaw & Breiman 2004; Magness, Huettmann & Morton 2008). 

Instead, the method provides measures of variable importance, which was used in Chapter Three 

(Howard et al. 2015). These measures are receiving increased attention throughout ecological 

studies (Strobl et al. 2008; Vincenzi et al. 2011; Boulangeat, Gravel & Thuiller 2012) as a means 

of reliably selecting the most important predictor variables for explaining ecological trends. Even 

though the unique features and complexity of random forests, raises some practical issues, their 

predictive performance far exceeds more traditional modelling approaches, and when summarised 

can provide powerful ecological insights.  

7.1.3  Considerations when projecting changes under future climate 

Throughout this thesis, I have consistently addressed the need to consider the influence of spatial 

autocorrelation. In Chapter Two (Howard et al. 2014), I developed a spatial autocovariate term that, 

by accounting for potential correlation in the environmental covariates of more proximate cells and 

unmeasured biotic factors such as dispersal, significantly reduced autocorrelation in model 
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residuals. In Chapter Three (Howard et al. 2015) I demonstrated that spatial autocorrelation can 

explain the majority of variance in species abundance distributions in relation to climate and land-

use. Despite the apparent importance of this variable in explaining variation in abundance, in 

Chapter Five  I showed that the inclusion of a spatial autocovariate term only improves the 

predictive performance of these models in very specific cases, such as where species occur at high 

abundance (i.e., ≥10, 000 breeding pairs in a 50 km UTM grid cell). Given the importance of these 

high abundance cells in driving the total abundance of a species (Gibson, Van der Marel & 

Starzomski 2009) and the significance of identifying them for conservation purposes (McCarthy, 

Thompson & Possingham 2005; McCarthy, Thompson & Williams 2006; McCarthy et al. 2011), I 

included this term when projecting the abundance of species under climate change. This result, 

however, does raise questions regarding the utility of accounting for spatial autocorrelation when 

using models of abundance for predictive purposes. With the improvements in our understanding of 

species-environment relationships gained by modelling abundance rather than presence-absence 

data, the use of a spatial autocovariate term may not always be necessary.  

When projecting species abundance under climate change, we assume that the strength of 

the relationship between climatic variables and abundance remains constant. Throughout this 

thesis, I have discussed the potential for spatial non-stationarity in variable importance, and the 

potential for climate to have varying importance throughout a species range. When utilising species 

distribution and abundance models to assess the impacts of future climate change, they may be 

applied to conditions that differ to those used in model calibration (Mair et al. 2014). Model 

extrapolation can result in erroneous predictions (Araújo & Guisan 2006; Heikkinen et al. 2006). In 

Chapter Five, I assessed the performance of species abundance models in novel conditions and 

demonstrated that these methods can be used to produce informative predictions of abundance in a 

novel region.  

Many of the species considered in this project are migratory, with many spending their 

non-breeding season in sub-Saharan Africa. In the general introduction (Chapter One), I discussed 

the potential for conditions across the non-breeding grounds of these species to affect their 

population sizes (Vickery et al. 2014). However, the analyses in Chapter Four, demonstrated that 

when considered alongside breeding ground conditions, climate and land-use across the African 

non-breeding grounds were of relatively low importance in driving the populations of migratory 

species. Therefore, I did not account for conditions away from the breeding grounds when making 

future predictions of abundance for migratory species. In fact, the results from Chapter Four 

implied that conditions during migration may be of greater significance for these species. 

Unfortunately, though, apart from a few recent advancements (Bayly, Rumsey & Clark 2011; 

Schmaljohann et al. 2012; Lemke et al. 2013; Saino et al. 2015), we only have a vague 

understanding of the routes and conditions that the majority of species experience during migration 
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(Vickery et al. 2014). Therefore, accounting for the potential impacts of factors outside of the 

breeding and non-breeding grounds on the abundances of the majority of migratory species is 

currently not possible. Accounting for the impacts of migratory factors is an important 

consideration for future analyses, as discussed in more detail below.  

7.2  Application for conservation planning 

As mentioned throughout this thesis, one of the primary benefits of estimating abundances is the 

direct application of the estimates for use in conservation planning (Johnston et al. 2013; Johnston 

et al. 2015). By monitoring changes in abundance, conservation managers can assess the threat 

status of a species and prioritise for actions (Mace et al. 2008; BirdLife International 2013). Using 

the projections of future abundance presented in Chapter Six, potential changes in the conservation 

designation of species under climate change could be identified before they occur, enabling pre-

emptive actions. In addition, projections of species spatial abundance can identify areas where the 

impacts of climate change are projected to be greatest. Information on the abundance of species 

combined with areas of suitable habitat also has utility for spatial conservation planning. Areas 

which will remain climatically suitable over time, and areas that will increase in suitability in the 

future, will be key sites for future conservation efforts; such sites can be identified from 

projections, such as those presented here (Vos et al. 2008; Alagador, Cerdeira & Araújo 2014). 

Furthermore, the suitability of areas that link current and future protected areas, can be evaluated 

and incorporated into spatial conservation planning, facilitating the movement of species among 

these sites (Williams et al. 2005; Chetkiewicz & Boyce 2009; Saura, Bodin & Fortin 2014). 

 Knowledge on the potential abundance responses of species to climate change will allow 

proactive rather than reactive management strategies. Early evidence suggests that proactive 

approaches can improve long-term biodiversity conservation outcomes (Cardador et al. 2015). For 

instance, the inclusion of species distribution models into reserve design resulted in more efficient 

conservation of freshwater biodiversity (Bush et al. 2014). Despite the higher initial costs, 

proactive management can highlight sites that become unsuitable in the future and lead to fewer 

additional areas being required to meet gaps in protection in the future. Such approaches can also 

identify protected areas that could be substituted with others that achieve more for conservation 

(Fuller et al. 2010).  With the limited resources available to conservation practitioners, robust 

abundance monitoring, combined with predictive modelling will ensure efficient prioritization and 

investment into conservation actions that will have the greatest positive impact (Johnston et al. 

2015). 
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7.3  Future work 

The results presented throughout this thesis, provide the potential for a wide variety of subsequent 

analyses. In addition to the measures of community compositional change, presented in Chapter 

Six, these projections of species abundance could also be used to assess changes in functional and 

phylogenetic diversity. Functional diversity, the variety of biological traits presented by species 

within an ecosystem, is an important determinant of ecosystem processes (Petchey & Gaston 2002) 

and has been used to indicate how biodiversity may be affected by environmental stress (Buisson et 

al. 2013).  The kinds of species present within a community strongly influence ecosystem 

processes, mediating energy and material fluxes either directly or indirectly through alterations to 

biotic and abiotic conditions (Chapin III et al. 2000). The effects of species extinctions on 

functional diversity are not always clear, with some species considered functionally identical (Pillar 

et al. 2013). The loss of such functionally ‘redundant species’ would not have the same impacts on 

ecosystem processes, as the loss of functionally unique species (Petchey & Gaston 2002). 

Phylogenetic diversity, the evolutionary distinctiveness of species within a community, has been 

shown to be a better predictor of ecosystem functioning than species richness (Cadotte, Hamilton & 

Murray 2009; Cadotte, Albert & Walker 2013). This measure of diversity may act as a proxy for 

the evolutionary potential of a community and the ability of a system to evolve in response to 

environmental changes (Thuiller et al. 2011).  If a community is composed of more closely related 

species, phylogenetic diversity and hence evolutionary potential will be low. Conversely, if a 

community is composed of more distantly related species, phylogenetic diversity will be high, and 

the possibility of having a species with the evolutionary potential to respond to environmental 

change will increase (Winter, Devictor & Schweiger 2013). Analyses of the potential changes in 

functional and phylogenetic diversity, in addition to the changes in community composition I 

presented in Chapter Six, will provide greater insight into the resilience and resistance of 

ecosystems to environmental change (Chapin III et al. 2000).  

One of the major gaps in our knowledge, and what currently limits further refinement of 

the approaches presented here, is the lack of understanding of the use of habitats by trans-Saharan 

migratory birds outside of their European breeding grounds. For instance, for the majority of 

species, we know little about their migratory routes, use of stop over sites and movements during 

their residency across sub-Saharan Africa. Furthermore, it has been suggested that different 

populations within a species and distinct sub-species may overwinter in different regions of sub-

Saharan Africa (Williamson 1955; Morrison et al. 2013). This may drive variations in population 

trends that cannot be explained without comprehensive understanding of the migratory connectivity 

at both a species and population level (Cresswell 2014). However, recent improvements in tracking 

technologies are providing useful insight into the large-scale geographical movements and 
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migratory connectivity of avian migrants (Bächler et al. 2010). For example, the development of 

GPS tracking technology to allow greater location accuracy (Guilford et al. 2011), has advanced 

studies of large bodied birds such as storks (Chevallier et al. 2010) and vultures (García‐Ripollés, 

López‐López & Urios 2010). Light-level geolocators provide a suitable alternative to GPS tags, as 

the latter are currently too large and heavy to be used on smaller bodied species (Bridge et al. 

2011). Despite lacking the accuracy of GPS tags, geolocators still provide useful information on the 

movements of migratory birds, and have revealed the migration routes, stopover sites and wintering 

grounds of some populations of species including European Hoopoe (Upupa epops) (Bächler et al. 

2010), Red-backed Shrike (Lanius collurio) (Tøttrup et al. 2011) and the Turtle Dove (Streptopelia 

turtur) (Eraud et al. 2013). These tags are currently still too large to use on the smallest of 

migratory bird species and their widespread application is constrained by the need to recapture 

individuals to retrieve data (Bowlin et al. 2010). We are, however, approaching a period that will 

revolutionise our understanding of the large-scale movements of migrants. In particular the 

ICARUS (International Cooperation for Animal Research Using Space; http://icarusinitiative.org/) 

project will improve knowledge of the global distribution and migratory connectivity of small 

birds, animals and insects. Data generated by ICARUS and similar big-data animal tracking 

projects, are expected to provide exciting new insights into the life history and behaviour of 

migrants. Combining telemetry data with models of species’ distributions, abundances and 

demography could be the next major phase in ecological modelling techniques. If analytical 

developments can keep pace with technological advancements, real time models that integrate 

species habitat preferences with movement abilities could be developed. Soon, studies of this 

nature will do more than inform us about the ecology, evolution and physiology of species; they 

will use species to inform us about the changing state of our environment (Kays et al. 2015). 

  

http://icarusinitiative.org/
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7.4  Summary 

In this thesis, I have demonstrated the overriding importance of climate in determining the 

abundance of species at a landscape scale. I have also provided insights into the wide range of 

species potential responses to environmental change. Importantly, I have shown that there are 

spatial variations in the importance of climate in driving current and potential changes in species’ 

abundance. Future analyses need to consider both these spatial variations but also the importance of 

other abiotic and biotic factors when assessing the impacts of climate change. I have demonstrated 

the large scale impacts on species abundance of future climate change. Furthermore, due to the 

variety of different species responses to climate change, there will also be substantial changes in 

community composition. The implications of changes in abundance and communities on ecosystem 

services and functioning are currently unknown, but are a vital area of future research. I have also 

provided methodological insights in to the use and application of abundance modelling techniques. 

In particular, this project has demonstrated the benefits of modelling abundance data, both through 

the potential for direct application of projections of abundance, but also through the improvements 

in our understanding of species-environment relationships. Integration of these modelling advances 

into adaptive planning and conservation, should help to conserve current biodiversity and 

ecosystem functioning, and maintain ecological resilience and evolutionary potential at a landscape 

scale. In light of these findings, I recommend, that given the improvements to our understanding of 

species-environment relationships and the benefits for management, conservation organisations 

should be routinely monitoring abundance, rather than presence-absence.  

  

 

  



www.manaraa.com

 

122 
 

References 

Acevedo, P., Quirós-Fernández, F., Casal, J. & Vicente, J. (2014) Spatial distribution of wild boar 
population abundance: Basic information for spatial epidemiology and wildlife 
management. Ecological Indicators, 36, 594-600. 

Addo-Bediako, A., Chown, S.L. & Gaston, K.J. (2000) Thermal tolerance, climatic variability and 
latitude. Proceedings of the Royal Society of London Series B-Biological Sciences, 267, 739-
745. 

Ahola, M., Laaksonen, T., Sippola, K., Eeva, T., Rainio, K. & Lehikoinen, E. (2004) Variation in 
climate warming along the migration route uncouples arrival and breeding dates. Global 
Change Biology, 10, 1610-1617. 

Alagador, D., Cerdeira, J.O. & Araújo, M.B. (2014) Shifting protected areas: scheduling spatial 
priorities under climate change. Journal of Applied Ecology, 51, 703-713. 

Alerstam, T., Hedenström, A. & Åkesson, S. (2003) Long-distance migration: evolution and 
determinants. Oikos, 103, 247-260. 

Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models: 
prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223-
1232. 

Altwegg, R., Roulin, A., Kestenholz, M. & Jenni, L. (2006) Demographic effects of extreme winter 
weather in the barn owl. Oecologia, 149, 44-51. 

Angert, A.L., Crozier, L.G., Rissler, L.J., Gilman, S.E., Tewksbury, J.J. & Chunco, A.J. (2011) Do 
species’ traits predict recent shifts at expanding range edges? Ecology Letters, 14, 677-
689. 

Araújo, M.B., Alagador, D., Cabeza, M., Nogués‐Bravo, D. & Thuiller, W. (2011) Climate change 
threatens European conservation areas. Ecology Letters, 14, 484-492. 

Araújo, M.B. & Guisan, A. (2006) Five (or so) challenges for species distribution modelling. Journal 
of Biogeography, 33, 1677-1688. 

Araújo, M.B. & Luoto, M. (2007) The importance of biotic interactions for modelling species 
distributions under climate change. Global Ecology and Biogeography, 16, 743-753. 

Araújo, M.B. & Pearson, R.G. (2005) Equilibrium of species’ distributions with climate. Ecography, 
28, 693-695. 

Araujo, M.B. & Peterson, A.T. (2012) Uses and misuses of bioclimatic envelope modeling. Ecology, 
93, 1527-1539. 

Araújo, M.B., Thuiller, W., Williams, P.H. & Reginster, I. (2005) Downscaling European species 
atlas distributions to a finer resolution: implications for conservation planning. Global 
Ecology and Biogeography, 14, 17-30. 

Ashton, K.G. (2002) Patterns of within-species body size variation of birds: strong evidence for 
Bergmann's rule. Global Ecology and Biogeography, 11, 505-523. 

Atkinson, P.W., Adams, W.M., Brouwer, J., Buchanan, G., Cheke, R.A., Cresswell, W., Hewson, 
C.M., Hulme, M.F., Manvell, A. & Sheehan, D.K. (2014) Defining the key wintering habitats 
in the Sahel for declining African-Eurasian migrants using expert assessment. Bird 
Conservation International, 24, 477-491. 

Augustin, N.H., Mugglestone, M.A. & Buckland, S.T. (1996) An autologistic model for the spatial 
distribution of wildlife. Journal of Applied Ecology, 33, 339-347. 

Augustin, N.H., Mugglestone, M.A. & Buckland, S.T. (1998) The role of simulation in modelling 
spatially correlated data. Environmetrics, 9, 175-196. 

Austin, M. (2007) Species distribution models and ecological theory: A critical assessment and 
some possible new approaches. Ecological Modelling, 200, 1-19. 

Austin, M.P. & Van Niel, K.P. (2011) Improving species distribution models for climate change 
studies: variable selection and scale. Journal of Biogeography, 38, 1-8. 



www.manaraa.com

 

123 
 

Bächler, E., Hahn, S., Schaub, M., Arlettaz, R., Jenni, L., Fox, J.W., Afanasyev, V. & Liechti, F. (2010) 
Year-Round Tracking of Small Trans-Saharan Migrants Using Light-Level Geolocators. Plos 
One, 5, e9566. 

Bagchi, R., Crosby, M., Huntley, B., Hole, D.G., Butchart, S.H.M., Collingham, Y., Kalra, M., 
Rajkumar, J., Rahmani, A., Pandey, M., Gurung, H., Trai, L.T., Van Quang, N. & Willis, S.G. 
(2013) Evaluating the effectiveness of conservation site networks under climate change: 
accounting for uncertainty. Global Change Biology, 19, 1236-1248. 

Bahn, V. & McGill, B.J. (2007) Can niche-based distribution models outperform spatial 
interpolation? Global Ecology and Biogeography, 16, 733-742. 

Bahn, V. & McGill, B.J. (2013) Testing the predictive performance of distribution models. Oikos, 
122, 321-331. 

Baillie, S.R. & Peach, W.J. (1992) Population Limitation in Palearctic-African Migrant Passerines. 
Ibis, 134, 120-132. 

Baker, D.J., Hartley, A.J., Burgess, N.D., Butchart, S.H.M., Carr, J.A., Smith, R.J., Belle, E. & Willis, 
S.G. (2015) Assessing climate change impacts for vertebrate fauna across the West African 
protected area network using regionally appropriate climate projections. Diversity and 
Distributions, 21, 991-1003. 

Bakkenes, M., Alkemade, J.R.M., Ihle, F., Leemans, R. & Latour, J.B. (2002) Assessing effects of 
forecasted climate change on the diversity and distribution of European higher plants for 
2050. Global Change Biology, 8, 390-407. 

Balmer, D.E., Gillings, S., Caffrey, B., Swann, R., Downie, I. & Fuller, R. (2013) Bird Atlas 2007-11: 
the breeding and wintering birds of Britain and Ireland. BTO Thetford. 

Barbaro, L., Couzi, L., Bretagnolle, V., Nezan, J. & Vetillard, F. (2008) Multi-scale habitat selection 
and foraging ecology of the eurasian hoopoe (Upupa epops) in pine plantations. 
Biodiversity and Conservation, 17, 1073-1087. 

Barbet-Massin, M. & Jetz, W. (2014) A 40-year, continent-wide, multispecies assessment of 
relevant climate predictors for species distribution modelling. Diversity and Distributions, 
20, 1285-1295. 

Barbet-Massin, M., Thuiller, W. & Jiguet, F. (2012) The fate of European breeding birds under 
climate, land-use and dispersal scenarios. Global Change Biology, 18, 881-890. 

Barbet-Massin, M., Walther, B.A., Thuiller, W., Rahbek, C. & Jiguet, F. (2009) Potential impacts of 
climate change on the winter distribution of Afro-Palaearctic migrant passerines. Biology 
Letters, 5, 248-251. 

Barbet‐Massin, M., Thuiller, W. & Jiguet, F. (2010) How much do we overestimate future local 
extinction rates when restricting the range of occurrence data in climate suitability 
models? Ecography, 33, 878-886. 

Barnagaud, J.-Y., Devictor, V., Jiguet, F., Barbet-Massin, M., Le Viol, I. & Archaux, F. (2012) Relating 
Habitat and Climatic Niches in Birds. Plos One, 7, e32819. 

Barnard, R., Batten, S., Beaugrand, G., Buckland, C., Conway, D.V.P., Edwards, M., Finlayson, J., 
Gregory, L.W., Halliday, N.C., John, A.W.G., Johns, D.G., Johnson, A.D., Jonas, T.D., Lindley, 
J.A., Nyman, J., Pritchard, P., Reid, P.C., Richardson, A.J., Saxby, R.E., Sidey, J., Smith, M.A., 
Stevens, D.P., Taylor, C.M., Tranter, P.R.G., Walne, A.W., Wootton, M., Wotton, C.O.M., 
Wright, J.C. & Recorder, C.P. (2004) Continuous plankton records: Plankton atlas of the 
North Atlantic Ocean (1958-1999). II. Biogeographical charts. Marine Ecology Progress 
Series, 11-75. 

Barry, J.P. & Baxter, C.H. (1995) Climate-related, long-term faunal changes in a California rocky 
intertidal community. Science(Washington), 267, 672-675. 

Bart, J. (2005) Monitoring the abundance of bird populations. Auk, 122, 15-25. 
Bart, J., Brown, S., Harrington, B. & I. Guy Morrison, R. (2007) Survey trends of North American 

shorebirds: population declines or shifting distributions? Journal of Avian Biology, 38, 73-
82. 



www.manaraa.com

 

124 
 

Bayly, N., Rumsey, S.R. & Clark, J. (2011) Crossing the Sahara desert: migratory strategies of the 
Grasshopper Warbler Locustella naevia. Journal of Ornithology, 152, 933-946. 

Beale, C.M., Brewer, M.J. & Lennon, J.J. (2014) A new statistical framework for the quantification 
of covariate associations with species distributions. Methods in Ecology and Evolution, 5, 
421-432. 

Beale, C.M., Lennon, J.J. & Gimona, A. (2008) Opening the climate envelope reveals no macroscale 
associations with climate in European birds. Proceedings of the National Academy of 
Sciences of the United States of America, 105, 14908-14912. 

Bearhop, S., Hilton, G.M., Votier, S.C. & Waldron, S. (2004) Stable isotope ratios indicate that body 
condition in migrating passerines is influenced by winter habitat. Proceedings of the Royal 
Society of London. Series B: Biological Sciences, 271, S215-S218. 

Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. (2012) Impacts of climate 
change on the future of biodiversity. Ecology Letters, 15, 365-377. 

Ben-David, A. (2008) Comparison of classification accuracy using Cohen’s Weighted Kappa. Expert 
Systems with Applications, 34, 825-832. 

Bennie, J., Wilson, R.J., Maclean, I.M.D. & Suggitt, A.J. (2014) Seeing the woods for the trees – 
when is microclimate important in species distribution models? Global Change Biology, 
20, 2699-2700. 

BirdLife, F.v.B. (2004) Birds in Europe: population estimates, trends and conservation status. 
Cambridge. 

BirdLife International (2013) IUCN Red List for birds. Downloaded from http://www.birdlife.org on 
05/02/2013. 

BirdLife International & NatureServe (2012) Bird species distribution maps of the world. BirdLife 
International, Cambridge, UK & NatureServe, Arlington, USA. 

Both, C., Bijlsma, R.G. & Visser, M.E. (2005) Climatic effects on timing of spring migration and 
breeding in a long-distance migrant, the pied flycatcher Ficedula hypoleuca. Journal of 
Avian Biology, 36, 368-373. 

Both, C., Bouwhuis, S., Lessells, C.M. & Visser, M.E. (2006) Climate change and population declines 
in a long-distance migratory bird. Nature, 441, 81-83. 

Both, C., Van Asch, M., Bijlsma, R.G., Van Den Burg, A.B. & Visser, M.E. (2009) Climate change and 
unequal phenological changes across four trophic levels: constraints or adaptations? 
Journal of Animal Ecology, 78, 73-83. 

Both, C., Van Turnhout, C.A., Bijlsma, R.G., Siepel, H., Van Strien, A.J. & Foppen, R.P. (2010) Avian 
population consequences of climate change are most severe for long-distance migrants in 
seasonal habitats. Proceedings of the Royal Society B: Biological Sciences, 277, 1259-1266. 

Both, C. & Visser, M.E. (2001) Adjustment to climate change is constrained by arrival date in a 
long-distance migrant bird. Nature, 411, 296-298. 

Both, C. & Visser, M.E. (2005) The effect of climate change on the correlation between avian life-
history traits. Global Change Biology, 11, 1606-1613. 

Bottrill, M.C., Joseph, L.N., Carwardine, J., Bode, M., Cook, C., Game, E.T., Grantham, H., Kark, S., 
Linke, S., McDonald-Madden, E., Pressey, R.L., Walker, S., Wilson, K.A. & Possingham, H.P. 
(2008) Is conservation triage just smart decision making? Trends in Ecology & Evolution, 
23, 649-654. 

Boulangeat, I., Gravel, D. & Thuiller, W. (2012) Accounting for dispersal and biotic interactions to 
disentangle the drivers of species distributions and their abundances. Ecology Letters, 15, 
584-593. 

Bouyer, Y., Rigot, T., Panzacchi, M., Moorter, B.V., Poncin, P., Beudels-Jamar, R., Odden, J. & 
Linnell, J.D.C. (2015) Using Zero-Inflated Models to Predict the Relative Distribution and 
Abundance of Roe Deer Over Very Large Spatial Scales. Annales Zoologici Fennici, 52, 66-
76. 

http://www.birdlife.org/


www.manaraa.com

 

125 
 

Bowlin, M.S., Henningsson, P., Muijres, F.T., Vleugels, R.H.E., Liechti, F. & Hedenström, A. (2010) 
The effects of geolocator drag and weight on the flight ranges of small migrants. Methods 
in Ecology and Evolution, 1, 398-402. 

Brambilla, M., Casale, F., Bergero, V., Bogliani, G., Crovetto, G.M., Falco, R., Roati, M. & Negri, I. 
(2010) Glorious past, uncertain present, bad future? Assessing effects of land-use changes 
on habitat suitability for a threatened farmland bird species. Biological Conservation, 143, 
2770-2778. 

Brands, S., Herrera, S., Fernández, J. & Gutiérrez, J.M. (2013) How well do CMIP5 Earth System 
Models simulate present climate conditions in Europe and Africa? Climate Dynamics, 41, 
803-817. 

Bray, J.R. & Curtis, J.T. (1957) An Ordination of the Upland Forest Communities of Southern 
Wisconsin. Ecological Monographs, 27, 326-349. 

Breiman, L. (2001a) Random forests. Machine Learning, 45, 5-32. 
Breiman, L. (2001b) Statistical modeling: The two cultures (with comments and a rejoinder by the 

author). Statistical Science, 16, 199-231. 
Bretagnolle, V., Mougeot, F. & Thibault, J.C. (2008) Density dependence in a recovering osprey 

population: demographic and behavioural processes. Journal of Animal Ecology, 77, 998-
1007. 

Bridge, E.S., Thorup, K., Bowlin, M.S., Chilson, P.B., Diehl, R.H., Fléron, R.W., Hartl, P., Kays, R., 
Kelly, J.F., Robinson, W.D. & Wikelski, M. (2011) Technology on the Move: Recent and 
Forthcoming Innovations for Tracking Migratory Birds. Bioscience, 61, 689-698. 

Brommer, J.E., Lehikoinen, A. & Valkama, J. (2012) The Breeding Ranges of Central European and 
Arctic Bird Species Move Poleward. Plos One, 7, e43648. 

Brose, U., Dunne, J.A., Montoya, J.M., Petchey, O.L., Schneider, F.D. & Jacob, U. (2012) Climate 
change in size-structured ecosystems. Philosophical Transactions of the Royal Society of 
London B: Biological Sciences, 367, 2903-2912. 

Brotons, L., Thuiller, W., Araujo, M.B. & Hirzel, A.H. (2004) Presence-absence versus presence-only 
modelling methods for predicting bird habitat suitability. Ecography, 27, 437-448. 

Brown, J.H. (1984) On the Relationship between Abundance and Distribution of Species. American 
Naturalist, 124, 255-279. 

Brown, J.H. & Gillooly, J.F. (2003) Ecological food webs: High-quality data facilitate theoretical 
unification. Proceedings of the National Academy of Sciences, 100, 1467-1468. 

Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. & West, G.B. (2004) Toward a metabolic theory 
of ecology. Ecology, 85, 1771-1789. 

Brown, J.H. & Maurer, B.A. (1989) Macroecology - the Division of Food and Space among Species 
on Continents. Science, 243, 1145-1150. 

Brown, J.H., Stevens, G.C. & Kaufman, D.M. (1996) The Geographic Range: Size, Shape, 
Boundaries, and Internal Structure. Annual Review of Ecology and Systematics, 27, 597-
623. 

Brown, J.H., Valone, T.J. & Curtin, C.G. (1997) Reorganization of an arid ecosystem in response to 
recent climate change. Proceedings of the National Academy of Sciences, 94, 9729-9733. 

Buckley, L.B. & Kingsolver, J.G. (2012) Functional and Phylogenetic Approaches to Forecasting 
Species' Responses to Climate Change. Annual Review of Ecology, Evolution, and 
Systematics, Vol 43, 43, 205-226. 

Buisson, L., Grenouillet, G., Villéger, S., Canal, J. & Laffaille, P. (2013) Toward a loss of functional 
diversity in stream fish assemblages under climate change. Global Change Biology, vol. 
19, pp. 387-400. 

Burnham, K.P. & Anderson, D.R. (2002) Model selection and multimodel inference: a practical 
information-theoretic approach. Springer Science & Business Media. 

Burrows, M.T., Schoeman, D.S., Richardson, A.J., Molinos, J.G., Hoffmann, A., Buckley, L.B., 
Moore, P.J., Brown, C.J., Bruno, J.F., Duarte, C.M., Halpern, B.S., Hoegh-Guldberg, O., 



www.manaraa.com

 

126 
 

Kappel, C.V., Kiessling, W., O'Connor, M.I., Pandolfi, J.M., Parmesan, C., Sydeman, W., 
Ferrier, S., Williams, K.J. & Poloczanska, E.S. (2014) Geographical limits to species-range 
shifts are suggested by climate velocity. Nature, 507, 492-495. 

Bush, A., Hermoso, V., Linke, S., Nipperess, D., Turak, E. & Hughes, L. (2014) Freshwater 
conservation planning under climate change: demonstrating proactive approaches for 
Australian Odonata. Journal of Applied Ecology, 51, 1273-1281. 

Cadotte, M., Albert, C.H. & Walker, S.C. (2013) The ecology of differences: assessing community 
assembly with trait and evolutionary distances. Ecology Letters, 16, 1234-1244. 

Cadotte, M.W., Hamilton, M.A. & Murray, B.R. (2009) Phylogenetic relatedness and plant invader 
success across two spatial scales. Diversity and Distributions, 15, 481-488. 

Cahill, A.E., Aiello-Lammens, M.E., Fisher-Reid, M.C., Hua, X., Karanewsky, C.J., Yeong Ryu, H., 
Sbeglia, G.C., Spagnolo, F., Waldron, J.B., Warsi, O. & Wiens, J.J. (2013) How does climate 
change cause extinction? Proceedings of the Royal Society of London B: Biological 
Sciences, 280. 

Cardador, L., Brotons, L., Mougeot, F., Giralt, D., Bota, G., Pomarol, M. & Arroyo, B. (2015) 
Conservation Traps and Long-Term Species Persistence in Human-Dominated Systems. 
Conservation Letters, DOI: 10.1111/conl.12160. 

Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., Narwani, A., Mace, 
G.M., Tilman, D., Wardle, D.A., Kinzig, A.P., Daily, G.C., Loreau, M., Grace, J.B., 
Larigauderie, A., Srivastava, D.S. & Naeem, S. (2012) Biodiversity loss and its impact on 
humanity. Nature, 486, 59-67. 

Catchpole, E.A., Morgan, B.J., Coulson, T., Freeman, S.N. & Albon, S.D. (2000) Factors influencing 
Soay sheep survival. Journal of the Royal Statistical Society: Series C (Applied Statistics), 
49, 453-472. 

Cattadori, I.M., Haydon, D.T., Thirgood, S.J. & Hudson, P.J. (2003) Are indirect measures of 
abundance a useful index of population density? The case of red grouse harvesting. Oikos, 
100, 439-446. 

Chamberlain, D.E. & Fuller, R.J. (2001) Contrasting patterns of change in the distribution and 
abundance of farmland birds in relation to farming system in lowland Britain. Global 
Ecology and Biogeography, 10, 399-409. 

Chamberlain, D.E., Fuller, R.J., Bunce, R.G.H., Duckworth, J.C. & Shrubb, M. (2000) Changes in the 
abundance of farmland birds in relation to the timing of agricultural intensification in 
England and Wales. Journal of Applied Ecology, 37, 771-788. 

Chamberlain, D.E. & Gregory, R.D. (1999) Coarse and fine scale habitat associations of breeding 
Skylarks Alauda arvensis in the UK. Bird Study, 46, 34-47. 

Chamberlain, D.E., Wilson, A.M., Browne, S.J. & Vickery, J.A. (1999) Effects of habitat type and 
management on the abundance of skylarks in the breeding season. Journal of Applied 
Ecology, 36, 856-870. 

Chapin III, F.S., Zavaleta, E.S., Eviner, V.T., Naylor, R.L., Vitousek, P.M., Reynolds, H.L., Hooper, 
D.U., Lavorel, S., Sala, O.E., Hobbie, S.E., Mack, M.C. & Diaz, S. (2000) Consequences of 
changing biodiversity. Nature, 405, 234-242. 

Chen, C., Liaw, A. & Breiman, A. (2004) Using Random Forest to Learn Imbalanced Data.Technical 
Report 666, Statistics Department, University of California at Berkeley. 

Chen, I.-C., Hill, J.K., Ohlemüller, R., Roy, D.B. & Thomas, C.D. (2011) Rapid Range Shifts of Species 
Associated with High Levels of Climate Warming. Science, 333, 1024-1026. 

Chetkiewicz, C.L.B. & Boyce, M.S. (2009) Use of resource selection functions to identify 
conservation corridors. Journal of Applied Ecology, 46, 1036-1047. 

Chevallier, D., Handrich, Y., Georges, J.-Y., Baillon, F., Brossault, P., Aurouet, A., Le Maho, Y. & 
Massemin, S. (2010) Influence of weather conditions on the flight of migrating black 
storks. Proceedings of the Royal Society of London B: Biological Sciences, 277, 2755-2764. 



www.manaraa.com

 

127 
 

Clobert, J., Baguette, M., Benton, T.G., Bullock, J.M. & Ducatez, S. (2012) Dispersal ecology and 
evolution. Oxford University Press. 

Cohen, J. (1960) A Coefficient of Agreement for Nominal Scales. Educational and Psychological 
Measurement, 20, 37-46. 

Conlisk, E., Lawson, D., Syphard, A.D., Franklin, J., Flint, L., Flint, A. & Regan, H.M. (2012) The Roles 
of Dispersal, Fecundity, and Predation in the Population Persistence of an Oak (Quercus 
engelmannii) under Global Change. Plos One, 7, e36391. 

Coppack, T., Pulido, F., Czisch, M., Auer, D.P. & Berthold, P. (2003) Photoperiodic response may 
facilitate adaptation to climatic change in long-distance migratory birds. Proceedings of 
the Royal Society of London B: Biological Sciences, 270, S43-S46. 

Coppack, T., Tindemans, I., Czisch, M., Van der Linden, A., Berthold, P. & Pulido, F. (2008) Can 
long-distance migratory birds adjust to the advancement of spring by shortening 
migration distance? The response of the pied flycatcher to latitudinal photoperiodic 
variation. Global Change Biology, 14, 2516-2522. 

Corlett, R.T. & Westcott, D.A. (2013) Will plant movements keep up with climate change? Trends 
in Ecology & Evolution, 28, 482-488. 

Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S.J., Kubiszewski, I., Farber, S. & 
Turner, R.K. (2014) Changes in the global value of ecosystem services. Global 
Environmental Change, 26, 152-158. 

Coulson, T., Catchpole, E.A., Albon, S.D., Morgan, B.J., Pemberton, J., Clutton-Brock, T.H., Crawley, 
M. & Grenfell, B. (2001) Age, sex, density, winter weather, and population crashes in Soay 
sheep. Science, 292, 1528-1531. 

Cramp, S., Simmons, A. & Perrins, C. (1977-1994) Handbook of thebirds of Europe, the Middle East 
and North Africa: the Birds of the Western Palaearctic. Oxford University Press, Oxford. 

Cresswell, W. (2014) Migratory connectivity of Palaearctic–African migratory birds and their 
responses to environmental change: the serial residency hypothesis. Ibis, 156, 493-510. 

Cresswell, W., Boyd, M. & Stevens, M. (2008) Movements of Palearctic and Afrotropical bird 
species during the dry season (November-February) within Nigeria. Proceedings of the 
12th Pan African Ornithological Congress, pp. 18-28. 

Cresswell, W., Wilson, J.M., Vickery, J., Jones, P. & Holt, S. (2007) Changes in densities of Sahelian 
bird species in response to recent habitat degradation. Ostrich, 78, 247-253. 

Crick, H.Q.P. (2004) The impact of climate change on birds. Ibis, 146, 48-56. 
Crick, H.Q.P. & Sparks, T.H. (1999) Climate change related to egg-laying trends. Nature, 399, 423-

424. 
Cumming, G. (2007) Global biodiversity scenarios and landscape ecology. Landscape Ecology, 22, 

671-685. 
Cushing, D.H. (1995) Population Production and Regulation in the Sea: A Fisheries Perspective. 

Cambridge University Press. 
Cutler, D.R., Edwards, T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J. & Lawler, J.J. (2007) 

Random forests for classification in ecology. Ecology, 88, 2783-2792. 
Dahlgren, J.P. (2010) Alternative regression methods are not considered in Murtaugh (2009) or by 

ecologists in general. Ecology Letters, 13, E7-E9. 
Davey, C.M., Chamberlain, D.E., Newson, S.E., Noble, D.G. & Johnston, A. (2012) Rise of the 

generalists: evidence for climate driven homogenization in avian communities. Global 
Ecology and Biogeography, 21, 568-578. 

Dawson, T.P., Jackson, S.T., House, J.I., Prentice, I.C. & Mace, G.M. (2011) Beyond Predictions: 
Biodiversity Conservation in a Changing Climate. Science, 332, 53-58. 

De'ath, G. & Fabricius, K.E. (2000) Classification and regression trees: A powerful yet simple 
technique for ecological data analysis. Ecology, 81, 3178-3192. 

Dennis, B., Munholland, P.L. & Scott, J.M. (1991) Estimation of Growth and Extinction Parameters 
for Endangered Species. Ecological Monographs, 61, 115-143. 



www.manaraa.com

 

128 
 

Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. (2008) Birds are tracking climate warming, but not 
fast enough. Proc Biol Sci, 275, 2743-2748. 

Devictor, V., Mouillot, D., Meynard, C., Jiguet, F., Thuiller, W. & Mouquet, N. (2010) Spatial 
mismatch and congruence between taxonomic, phylogenetic and functional diversity: the 
need for integrative conservation strategies in a changing world. Ecology Letters, 13, 
1030-1040. 

Devictor, V., van Swaay, C., Brereton, T., Brotons, L., Chamberlain, D., Heliola, J., Herrando, S., 
Julliard, R., Kuussaari, M., Lindstrom, A., Reif, J., Roy, D.B., Schweiger, O., Settele, J., 
Stefanescu, C., Van Strien, A., Van Turnhout, C., Vermouzek, Z., WallisDeVries, M., 
Wynhoff, I. & Jiguet, F. (2012) Differences in the climatic debts of birds and butterflies at a 
continental scale. Nature Clim. Change, 2, 121-124. 

Dobkin, D., Olivieri, I. & Ehrlich, P. (1987) Rainfall and the interaction of microclimate with larval 
resources in the population dynamics of checkerspot butterflies (Euphydryas editha) 
inhabiting serpentine grassland. Oecologia, 71, 161-166. 

Donald, P.F., Green, R.E. & Heath, M.F. (2001) Agricultural intensification and the collapse of 
Europe's farmland bird populations. Proceedings of the Royal Society of London Series B-
Biological Sciences, 268, 25-29. 

Donald, P.F., Sanderson, F.J., Burfield, I.J. & van Bommel, F.P.J. (2006) Further evidence of 
continent-wide impacts of agricultural intensification on European farmland birds, 1990-
2000. Agriculture Ecosystems & Environment, 116, 189-196. 

Dormann, C.F. (2007a) Effects of incorporating spatial autocorrelation into the analysis of species 
distribution data. Global Ecology and Biogeography, 16, 129-138. 

Dormann, C.F. (2007b) Promising the future? Global change projections of species distributions. 
Basic and Applied Ecology, 8, 387-397. 

Dormann, C.F., McPherson, J.M., Araujo, M.B., Bivand, R., Bolliger, J., Carl, G., Davies, R.G., Hirzel, 
A., Jetz, W., Kissling, W.D., Kuhn, I., Ohlemuller, R., Peres-Neto, P.R., Reineking, B., 
Schroder, B., Schurr, F.M. & Wilson, R. (2007) Methods to account for spatial 
autocorrelation in the analysis of species distributional data: a review. Ecography, 30, 
609-628. 

Doswald, N., Willis, S.G., Collingham, Y.C., Pain, D.J., Green, R.E. & Huntley, B. (2009) Potential 
impacts of climatic change on the breeding and non-breeding ranges and migration 
distance of European Sylvia warblers. Journal of Biogeography, 36, 1194-1208. 

Duong, T. (2007) ks: Kernel density estimation and kernel discriminant analysis for multivariate 
data in R. Journal of Statistical Software, 21, 1-16. 

EBCC (2013) Pan-European Common Bird Monitoring Scheme 
(http://www.ebcc.info/pecbm.html) [Online]. Available: 
http://www.ebcc.info/pecbm.html [Accessed 1st August 2013]. 

Eglington, S.M. & Pearce-Higgins, J.W. (2012) Disentangling the relative importance of changes in 
climate and land-use intensity in driving recent bird population trends. Plos One, 7, 
e30407. 

Ehrlén, J. & Morris, W.F. (2015) Predicting changes in the distribution and abundance of species 
under environmental change. Ecology Letters, 18, 303-314. 

Ehrlich, P., Murphy, D., Singer, M., Sherwood, C., White, R. & Brown, I. (1980) Extinction, 
reduction, stability and increase: the responses of checkerspot butterfly (Euphydryas) 
populations to the California drought. Oecologia, 46, 101-105. 

Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., J. Hijmans, R., 
Huettmann, F., R. Leathwick, J., Lehmann, A., Li, J., G. Lohmann, L., A. Loiselle, B., Manion, 
G., Moritz, C., Nakamura, M., Nakazawa, Y., McC. M. Overton, J., Townsend Peterson, A., 
J. Phillips, S., Richardson, K., Scachetti-Pereira, R., E. Schapire, R., Soberón, J., Williams, S., 
S. Wisz, M. & E. Zimmermann, N. (2006) Novel methods improve prediction of species’ 
distributions from occurrence data. Ecography, 29, 129-151. 

http://www.ebcc.info/pecbm.html
http://www.ebcc.info/pecbm.html


www.manaraa.com

 

129 
 

Elith, J., Kearney, M. & Phillips, S. (2010) The art of modelling range-shifting species. Methods in 
Ecology and Evolution, 1, 330-342. 

Elith, J. & Leathwick, J.R. (2009) Species distribution models: ecological explanation and prediction 
across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677. 

Elith, J., Leathwick, J.R. & Hastie, T. (2008) A working guide to boosted regression trees. Journal of 
Animal Ecology, 77, 802-813. 

Eraud, C., Rivière, M., Lormée, H., Fox, J.W., Ducamp, J.-J. & Boutin, J.-M. (2013) Migration Routes 
and Staging Areas of Trans-Saharan Turtle Doves Appraised from Light-Level Geolocators. 
Plos One, 8, e59396. 

EU (2007) LIFE and Europe's Wetlands: Restoring a Vital Ecosystem. European Commission. 
Directorate-General for the Environment, Office for Official Publications of the European 
Communities. 

Faragó, S. & Hangya, K. (2012) Effects of water level on waterbird abundance and diversity along 
the middle section of the Danube River. Hydrobiologia, 697, 15-21. 

Fensholt, R. & Rasmussen, K. (2011) Analysis of trends in the Sahelian ‘rain-use efficiency’ using 
GIMMS NDVI, RFE and GPCP rainfall data. Remote Sensing of Environment, 115, 438-451. 

Finch, T., Pearce-Higgins, J., Leech, D.I. & Evans, K. (2014) Carry-over effects from passage regions 
are more important than breeding climate in determining the breeding phenology and 
performance of three avian migrants of conservation concern. Biodiversity and 
Conservation, 23, 2427-2444. 

Finch, T., Saunders, P., Avilés, J.M., Bermejo, A., Catry, I., de la Puente, J., Emmenegger, T., 
Mardega, I., Mayet, P., Parejo, D., Račinskis, E., Rodríguez-Ruiz, J., Sackl, P., Schwartz, T., 
Tiefenbach, M., Valera, F., Hewson, C., Franco, A. & Butler, S.J. (2015) A pan-European, 
multipopulation assessment of migratory connectivity in a near-threatened migrant bird. 
Diversity and Distributions, 21, 1051-1062. 

Finley, A.O. (2011) Comparing spatially-varying coefficients models for analysis of ecological data 
with non-stationary and anisotropic residual dependence. Methods in Ecology and 
Evolution, 2, 143-154. 

Fonderflick, J., Caplat, P., Lovaty, F., Thévenot, M. & Prodon, R. (2010) Avifauna trends following 
changes in a Mediterranean upland pastoral system. Agriculture, ecosystems & 
environment, 137, 337-347. 

Fontaine, B., Roucou, P., Gaetani, M. & Marteau, R. (2011) Recent changes in precipitation, ITCZ 
convection and northern tropical circulation over North Africa (1979–2007). International 
Journal of Climatology, 31, 633-648. 

Forman, R.T.T. (1995) Land Mosaics: The Ecology of Landscapes and Regions. Cambridge 
University Press. 

Fortin, M.-J. & Dale., M.R.T. (2005) Spatial Analysis: A Guide for Ecologists. Cambridge University 
Press  

Franklin, J. (1995) Predictive vegetation mapping: Geographic modelling of biospatial patterns in 
relation to environmental gradients. Progress in Physical Geography, 19, 474-499. 

Franklin, J. (2010) Mapping Species Distributions: Spatial Inference and Prediction. Cambridge 
University Press. 

Freckleton, R.P. (2009) The seven deadly sins of comparative analysis. Journal of Evolutionary 
Biology, 22, 1367-1375. 

Freckleton, R.P., Harvey, P.H. & Pagel, M. (2002) Phylogenetic Analysis and Comparative Data: A 
Test and Review of Evidence. The American Naturalist, 160, 712-726. 

Frederiksen, M., Wanless, S., Harris, M.P., Rothery, P. & Wilson, L.J. (2004) The role of industrial 
fisheries and oceanographic change in the decline of North Sea black‐legged kittiwakes. 
Journal of Applied Ecology, 41, 1129-1139. 



www.manaraa.com

 

130 
 

Freeman, E.A. & Moisen, G.G. (2008) A comparison of the performance of threshold criteria for 
binary classification in terms of predicted prevalence and kappa. Ecological Modelling, 
217, 48-58. 

Fuller, R.A., McDonald-Madden, E., Wilson, K.A., Carwardine, J., Grantham, H.S., Watson, J.E.M., 
Klein, C.J., Green, D.C. & Possingham, H.P. (2010) Replacing underperforming protected 
areas achieves better conservation outcomes. Nature, 466, 365-367. 

Fuller, R.J., Smith, K.W., Grice, P.V., Currie, F.A. & Quine, C.P. (2007) Habitat change and woodland 
birds in Britain: implications for management and future research. Ibis, 149, 261-268. 

Galbraith, H. (1988) Effects of Agriculture on the Breeding Ecology of Lapwings Vanellus vanellus. 
Journal of Applied Ecology, 25, 487-503. 

García‐Ripollés, C., López‐López, P. & Urios, V. (2010) First description of migration and wintering 
of adult Egyptian Vultures Neophron percnopterus tracked by GPS satellite telemetry. 
Bird Study, 57, 261-265. 

García, V.B. & Kittlein, M.J. (2005) Diet, habitat use, and relative abundance of pampas fox 
(Pseudalopex gymnocercus) in northern Patagonia, Argentina. Mammalian Biology - 
Zeitschrift für Säugetierkunde, 70, 218-226. 

Gaston, K. & Blackburn, T. (2008) Pattern and Process in Macroecology. Wiley. 
Gaston, K.J., Davies, R.G., Orme, C.D.L., Olson, V.A., Thomas, G.H., Ding, T.-S., Rasmussen, P.C., 

Lennon, J.J., Bennett, P.M., Owens, I.P.F. & Blackburn, T.M. (2007) Spatial turnover in the 
global avifauna. Proceedings of the Royal Society of London B: Biological Sciences, 274, 
1567-1574. 

Gaston, K.J. & Fuller, R.A. (2008) Commonness, population depletion and conservation biology. 
Trends in Ecology & Evolution, 23, 14-19. 

Geman, S. & Geman, D. (1984) Stochastic Relaxation, Gibbs Distributions, and the Bayesian 
Restoration of Images. IEEE Trans Pattern Anal Mach Intell, 6, 721-741. 

Gibbons, D.W., Donald, P.F., Bauer, H.-G., Fornasari, L. & Dawson, I.K. (2007) Mapping avian 
distributions: the evolution of bird atlases: Capsule An increasing proportion of atlases 
now map patterns of abundance but they are still a minority even though they require no 
more input of time or fieldworkers. Bird Study, 54, 324-334. 

Gibbons, D.W., Reid, J.B., Chapman, R.A., Ornithologists' Club, S. & Conservancy, I.W. (1993) The 
new atlas of breeding birds in Britain and Ireland: 1988-1991. Poyser London. 

Gibson, S.Y., Van der Marel, R.C. & Starzomski, B.M. (2009) Climate change and conservation of 
leading‐edge peripheral populations. Conservation Biology, 23, 1369-1373. 

Gilbert, G., Tyler, G.A., Dunn, C.J. & Smith, K.W. (2005) Nesting habitat selection by bitterns 
Botaurus stellaris in Britain and the implications for wetland management. Biological 
Conservation, 124, 547-553. 

Gillson, L., Dawson, T.P., Jack, S. & McGeoch, M.A. (2013) Accommodating climate change 
contingencies in conservation strategy. Trends in Ecology & Evolution, 28, 135-142. 

Gislason, P.O., Benediktsson, J.A. & Sveinsson, J.R. (2006) Random Forests for land cover 
classification. Pattern Recognition Letters, 27, 294-300. 

Gordo, O., Brotons, L., Ferrer, X. & Comas, P. (2005) Do changes in climate patterns in wintering 
areas affect the timing of the spring arrival of trans-Saharan migrant birds? Global Change 
Biology, 11, 12-21. 

Gottfried, M., Pauli, H., Futschik, A., Akhalkatsi, M., Barančok, P., Alonso, J.L.B., Coldea, G., Dick, J., 
Erschbamer, B. & Kazakis, G. (2012) Continent-wide response of mountain vegetation to 
climate change. Nature Climate Change, 2, 111-115. 

Green, R.E. (1984) The feeding ecology and survival of partridge chicks (Alectoris rufa and Perdix 
perdix) on arable farmland in East Anglia. Journal of Applied Ecology, 817-830. 

Green, R.E., Collingham, Y.C., Willis, S.G., Gregory, R.D., Smith, K.W. & Huntley, B. (2008) 
Performance of climate envelope models in retrodicting recent changes in bird population 
size from observed climatic change. Biology Letters, 4, 599-602. 



www.manaraa.com

 

131 
 

Gregory, R.D., Noble, D.G. & Custance, J. (2004) The state of play of farmland birds: population 
trends and conservation status of lowland farmland birds in the United Kingdom. Ibis, 
146, 1-13. 

Gregory, R.D. & van Strien, A. (2010) Wild bird indicators: using composite population trends of 
birds as measures of environmental health. Ornithological Science, 9, 3-22. 

Gregory, R.D., van Strien, A., Vorisek, P., Meyling, A.W.G., Noble, D.G., Foppen, R.P.B. & Gibbons, 
D.W. (2005) Developing indicators for European birds. Philosophical Transactions of the 
Royal Society B-Biological Sciences, 360, 269-288. 

Gregory, R.D., Vorisek, P., Noble, D.G., Van Strien, A., Klvanova, A., Eaton, M., Meyling, A.W.G., 
Joys, A., Foppen, R.P.B. & Burfield, I.J. (2008) The generation and use of bird population 
indicators in Europe. Bird Conservation International, 18, S223-S244. 

Gregory, R.D., Vorisek, P., Van Strien, A., Meyling, A.W.G., Jiguet, F., Fornasari, L., Reif, J., 
Chylarecki, P. & Burfield, I.J. (2007) Population trends of widespread woodland birds in 
Europe. Ibis, 149, 78-97. 

Gregory, R.D., Willis, S.G., Jiguet, F., Vorisek, P., Klvanova, A., van Strien, A., Huntley, B., 
Collingham, Y.C., Couvet, D. & Green, R.E. (2009) An Indicator of the Impact of Climatic 
Change on European Bird Populations. Plos One, 4, e4678. 

Grotan, V., Saether, B.E., Engen, S., van Balen, J.H., Perdeck, A.C. & Visser, M.E. (2009) Spatial and 
temporal variation in the relative contribution of density dependence, climate variation 
and migration to fluctuations in the size of great tit populations. Journal of Animal 
Ecology, 78, 447-459. 

Guilford, T., Åkesson, S., Gagliardo, A., Holland, R.A., Mouritsen, H., Muheim, R., Wiltschko, R., 
Wiltschko, W. & Bingman, V.P. (2011) Migratory navigation in birds: new opportunities in 
an era of fast-developing tracking technology. Journal of Experimental Biology, 214, 3705-
3712. 

Guisan, A., Broennimann, O., Engler, R., Vust, M., Yoccoz, N.G., Lehmann, A. & Zimmermann, N.E. 
(2006) Using Niche-Based Models to Improve the Sampling of Rare Species 

Utilización de Modelos Basados en Nichos para Mejorar el Muestreo de Especies Raras. 
Conservation Biology, 20, 501-511. 

Guisan, A. & Harrell, F.E. (2000) Ordinal response regression models in ecology. Journal of 
Vegetation Science, 11, 617-626. 

Guisan, A. & Rahbek, C. (2011) SESAM – a new framework integrating macroecological and 
species distribution models for predicting spatio-temporal patterns of species 
assemblages. Journal of Biogeography, 38, 1433-1444. 

Guisan, A. & Thuiller, W. (2005) Predicting species distribution: offering more than simple habitat 
models. Ecology Letters, 8, 993-1009. 

Guisan, A. & Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology. 
Ecological Modelling, 135, 147-186. 

Hagemeijer, E.J.M. & Blair, M.J. (1997) The EBCC Atlas of European Breeding Birds: their 
distribution and abundance. T & A.D. Poyser, London. 

Hahn, S., Bauer, S. & Liechti, F. (2009) The natural link between Europe and Africa – 2.1 billion 
birds on migration. Oikos, 118, 624-626. 

Hannah, L., Midgley, G., Andelman, S., Araújo, M., Hughes, G., Martinez-Meyer, E., Pearson, R. & 
Williams, P. (2007) Protected area needs in a changing climate. Frontiers in Ecology and 
the Environment, 5, 131-138. 

Häring, T., Reger, B., Ewald, J., Hothorn, T. & Schröder, B. (2013) Regionalizing indicator values for 
soil reaction in the Bavarian Alps–from averages to multivariate spectra. Folia 
Geobotanica, 1-21. 

Harrington, R., Woiwod, I. & Sparks, T. (1999) Climate change and trophic interactions. Trends in 
Ecology & Evolution, 14, 146-150. 



www.manaraa.com

 

132 
 

Harrison, J.A. & Cherry, M. (1997) The atlas of southern African birds. BirdLife South Africa 
Johannesburg. 

Harvey, P.H. & Godfray, H.C.J. (1987) How Species Divide Resources. The American Naturalist, 
129, 318-320. 

Hastie, T.J. & Tibshirani, R.J. (1990) Generalized Additive Models. Taylor & Francis. 
Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guégan, J.-F., Kaufman, D.M., Kerr, J.T., 

Mittelbach, G.G., Oberdorff, T. & O'Brien, E.M. (2003) Energy, water, and broad-scale 
geographic patterns of species richness. Ecology, 84, 3105-3117. 

Haylock, M.R., Hofstra, N., Klein Tank, A.M.G., Klok, E.J., Jones, P.D. & New, M. (2008) A European 
daily high-resolution gridded data set of surface temperature and precipitation for 1950–
2006. Journal of Geophysical Research: Atmospheres, 113, D20119. 

Hedger, R., McKenzie, E., Heath, M., Wright, P., Scott, B., Gallego, A. & Andrews, J. (2004) Analysis 
of the spatial distributions of mature cod (Gadus morhua) and haddock (Melanogrammus 
aeglefinus) abundance in the North Sea (1980–1999) using generalised additive models. 
Fisheries Research, 70, 17-25. 

Heikkinen, R.K., Luoto, M., Araujo, M.B., Virkkala, R., Thuiller, W. & Sykes, M.T. (2006) Methods 
and uncertainties in bioclimatic envelope modelling under climate change. Progress in 
Physical Geography, 30, 751-777. 

Henderson, P.A. & Magurran, A.E. (2010) Linking species abundance distributions in numerical 
abundance and biomass through simple assumptions about community structure. 
Proceedings of the Royal Society of London B: Biological Sciences, 277, 1561-1570. 

Hickling, R., Roy, D.B., Hill, J.K., Fox, R. & Thomas, C.D. (2006) The distributions of a wide range of 
taxonomic groups are expanding polewards. Global Change Biology, 12, 450-455. 

Higgins, S.I., O'Hara, R.B. & Römermann, C. (2012) A niche for biology in species distribution 
models. Journal of Biogeography, 39, 2091-2095. 

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution 
interpolated climate surfaces for global land areas. International Journal of Climatology, 
25, 1965-1978. 

Hill, J., Thomas, C., Fox, R., Telfer, M., Willis, S., Asher, J. & Huntley, B. (2002) Responses of 
butterflies to twentieth century climate warming: implications for future ranges. 
Proceedings of the Royal Society of London B: Biological Sciences, 269, 2163-2171. 

Hoegh-Guldberg, O., Hughes, L., McIntyre, S., Lindenmayer, D.B., Parmesan, C., Possingham, H.P. 
& Thomas, C.D. (2008) Assisted Colonization and Rapid Climate Change. Science, 321, 345-
346. 

Hoekman, D. (2010) Turning up the heat: temperature influences the relative importance of top-
down and bottom-up effects. Ecology, 91, 2819-2825. 

Hoffmann, M., Hilton-Taylor, C., Angulo, A., Bohm, M., Brooks, T.M., Butchart, S.H.M., Carpenter, 
K.E., Chanson, J., Collen, B., Cox, N.A., Darwall, W.R.T., Dulvy, N.K., Harrison, L.R., Katariya, 
V., Pollock, C.M., Quader, S., Richman, N.I., Rodrigues, A.S.L., Tognelli, M.F., Vie, J.C., 
Aguiar, J.M., Allen, D.J., Allen, G.R., Amori, G., Ananjeva, N.B., Andreone, F., Andrew, P., 
Ortiz, A.L.A., Baillie, J.E.M., Baldi, R., Bell, B.D., Biju, S.D., Bird, J.P., Black-Decima, P., Blanc, 
J.J., Bolanos, F., Bolivar, W., Burfield, I.J., Burton, J.A., Capper, D.R., Castro, F., Catullo, G., 
Cavanagh, R.D., Channing, A., Chao, N.L., Chenery, A.M., Chiozza, F., Clausnitzer, V., Collar, 
N.J., Collett, L.C., Collette, B.B., Fernandez, C.F.C., Craig, M.T., Crosby, M.J., Cumberlidge, 
N., Cuttelod, A., Derocher, A.E., Diesmos, A.C., Donaldson, J.S., Duckworth, J.W., Dutson, 
G., Dutta, S.K., Emslie, R.H., Farjon, A., Fowler, S., Freyhof, J., Garshelis, D.L., Gerlach, J., 
Gower, D.J., Grant, T.D., Hammerson, G.A., Harris, R.B., Heaney, L.R., Hedges, S.B., Hero, 
J.M., Hughes, B., Hussain, S.A., Icochea, J., Inger, R.F., Ishii, N., Iskandar, D.T., Jenkins, 
R.K.B., Kaneko, Y., Kottelat, M., Kovacs, K.M., Kuzmin, S.L., La Marca, E., Lamoreux, J.F., 
Lau, M.W.N., Lavilla, E.O., Leus, K., Lewison, R.L., Lichtenstein, G., Livingstone, S.R., 
Lukoschek, V., Mallon, D.P., McGowan, P.J.K., McIvor, A., Moehlman, P.D., Molur, S., 



www.manaraa.com

 

133 
 

Alonso, A.M., Musick, J.A., Nowell, K., Nussbaum, R.A., Olech, W., Orlov, N.L., Papenfuss, 
T.J., Parra-Olea, G., Perrin, W.F., Polidoro, B.A., Pourkazemi, M., Racey, P.A., Ragle, J.S., 
Ram, M., Rathbun, G., Reynolds, R.P., Rhodin, A.G.J., Richards, S.J., Rodriguez, L.O., Ron, 
S.R., Rondinini, C., Rylands, A.B., de Mitcheson, Y.S., Sanciangco, J.C., Sanders, K.L., 
Santos-Barrera, G., Schipper, J., Self-Sullivan, C., Shi, Y.C., Shoemaker, A., Short, F.T., 
Sillero-Zubiri, C., Silvano, D.L., Smith, K.G., Smith, A.T., Snoeks, J., Stattersfield, A.J., Symes, 
A.J., Taber, A.B., Talukdar, B.K., Temple, H.J., Timmins, R., Tobias, J.A., Tsytsulina, K., 
Tweddle, D., Ubeda, C., Valenti, S.V., van Dijk, P.P., Veiga, L.M., Veloso, A., Wege, D.C., 
Wilkinson, M., Williamson, E.A., Xie, F., Young, B.E., Akcakaya, H.R., Bennun, L., Blackburn, 
T.M., Boitani, L., Dublin, H.T., da Fonseca, G.A.B., Gascon, C., Lacher, T.E., Mace, G.M., 
Mainka, S.A., McNeely, J.A., Mittermeier, R.A., Reid, G.M., Rodriguez, J.P., Rosenberg, 
A.A., Samways, M.J., Smart, J., Stein, B.A. & Stuart, S.N. (2010) The Impact of Conservation 
on the Status of the World's Vertebrates. Science, 330, 1503-1509. 

Holt, C.A., Fuller, R.J. & Dolman, P.M. (2011) Breeding and post-breeding responses of woodland 
birds to modification of habitat structure by deer. Biological Conservation, 144, 2151-
2162. 

Hopkins, J.J. & Kirby, K.J. (2007) Ecological change in British broadleaved woodland since 1947. 
Ibis, 149, 29-40. 

Hothorn, T., Hornik, K. & Zeileis, A. (2006a) party: A Laboratory for Recursive Part(y)tioning. 
Hothorn, T., Hornik, K. & Zeileis, A. (2006b) Unbiased recursive partitioning: A conditional 

inference framework. Journal of Computational and Graphical Statistics, 15, 651-674. 
Howard, C., Stephens, P.A., Pearce-Higgins, J.W., Gregory, R.D. & Willis, S.G. (2014) Improving 

species distribution models: the value of data on abundance. Methods in Ecology and 
Evolution, 5, 506-513. 

Howard, C., Stephens, P.A., Pearce-Higgins, J.W., Gregory, R.D. & Willis, S.G. (2015) The drivers of 
avian abundance: patterns in the relative importance of climate and land use. Global 
Ecology and Biogeography, 24, 1249-1260. 

Huntley, B. (1991) How plants respond to climate change: migration rates, individualism and the 
consequences for plant communities. Annals of Botany, 67, 15-22. 

Huntley, B., Collingham, Y.C., Willis, S.G. & Green, R.E. (2008) Potential Impacts of Climatic Change 
on European Breeding Birds. Plos One, 3, E1439. 

Huntley, B., Green, R.E., Collingham, Y. & Willis, S.G. (2007) A Climatic Atlas of European Breeding 
Birds. Durham University, The RSPB and Lynx Edicions, Barcelona. 

Illán, J.G., Thomas, C.D., Jones, J.A., Wong, W.-K., Shirley, S.M. & Betts, M.G. (2014) Precipitation 
and winter temperature predict long-term range-scale abundance changes in Western 
North American birds. Global Change Biology, 20, 3351-3364. 

Imperio, S., Ferrante, M., Grignetti, A., Santini, G. & Focardi, S. (2010) Investigating population 
dynamics in ungulates: Do hunting statistics make up a good index of population 
abundance? Wildlife Biology, 16, 205-214. 

Inger, R., Gregory, R., Duffy, J.P., Stott, I., Voříšek, P. & Gaston, K.J. (2014) Common European 
birds are declining rapidly while less abundant species' numbers are rising. Ecology 
Letters, 18, 28-36. 

International Union for Conservation of Nature, I. (2001) IUCN Red List categories and criteria. 
Version 3.1.IUCN Species Survival Commission. Cambridge. 

IPCC (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the 
Third Assessment Report of the Intergovernmental Panel on Climate Change. (eds J.T. 
Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell & C.A. 
Johnson), pp. 881. Cambridge, United Kingdom and New York, NY, USA. 

IPCC (2007a) Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III 
to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (ed. 
P. Core Writing Team, R.K and Reisinger, A.), pp. 104. IPCC, Geneva, Switzerland,. 



www.manaraa.com

 

134 
 

IPCC (2007b) Contribution of Working Group II to the Fourth Assessment Report of the 
Intergovernmental Panel on Climate Change. (eds M.L. Parry, O.F. Canziani, J.P. Palutikof, 
v.d.L. P.J. & C.E. Hanson). Cambridge, United Kingdom and New York, NY, USA. 

IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to 
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (ed. 
R.K.P.a.L.A.M. Core Writing Team), pp. 151. IPCC, Geneva, Switzerland. 

Ishwaran, H. (2007) Variable importance in binary regression trees and forests. Electronic Journal 
of Statistics, 1, 519-537. 

Jarzyna, M.A., Finley, A.O., Porter, W.F., Maurer, B.A., Beier, C.M. & Zuckerberg, B. (2014) 
Accounting for the space-varying nature of the relationships between temporal 
community turnover and the environment. Ecography, 37, 1073-1083. 

Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K. & Mooers, A.O. (2012) The global diversity of birds 
in space and time. Nature, 491, 444-448. 

Jetz, W., Wilcove, D.S. & Dobson, A.P. (2007) Projected impacts of climate and land-use change on 
the global diversity of birds. Plos Biology, 5, 1211-1219. 

Jiguet, F., Devictor, V., Ottvall, R., Van Turnhout, C., Van der Jeugd, H. & Lindstrom, A. (2010a) Bird 
population trends are linearly affected by climate change along species thermal ranges. 
Proceedings of the Royal Society B-Biological Sciences, 277, 3601-3608. 

Jiguet, F., Gadot, A.S., Julliard, R., Newson, S.E. & Couvet, D. (2007) Climate envelope, life history 
traits and the resilience of birds facing global change. Global Change Biology, 13, 1672-
1684. 

Jiguet, F., Gregory, R.D., Devictor, V., Green, R.E., Vorisek, P., Van Strien, A. & Couvet, D. (2010b) 
Population trends of European common birds are predicted by characteristics of their 
climatic niche. Global Change Biology, 16, 497-505. 

Johnston, A., Ausden, M., Dodd, A.M., Bradbury, R.B., Chamberlain, D.E., Jiguet, F., Thomas, C.D., 
Cook, A.S., Newson, S.E. & Ockendon, N. (2013) Observed and predicted effects of climate 
change on species abundance in protected areas. Nature Climate Change, 3, 1055-1061. 

Johnston, A., Fink, D., Reynolds, M.D., Hochachka, W.M., Sullivan, B.L., Bruns, N.E., Hallstein, E., 
Merrifield, M.S., Matsumoto, S. & Kelling, S. (2015) Abundance models improve spatial 
and temporal prioritization of conservation resources. Ecological Applications, 25, 1749-
1756. 

Julliard, R., Jiguet, F. & Couvet, D. (2004) Common birds facing global changes: what makes a 
species at risk? Global Change Biology, 10, 148-154. 

Kadmon, R., Farber, O. & Danin, A. (2003) A systematic analysis of factors affecting the 
performance of climatic envelope models. Ecological Applications, 13, 853-867. 

Kampichler, C., van Turnhout, C.A.M., Devictor, V. & van der Jeugd, H.P. (2012) Large-Scale 
Changes in Community Composition: Determining Land Use and Climate Change Signals. 
Plos One, 7, e35272. 

Kaplan, J.O., Krumhardt, K.M. & Zimmermann, N.E. (2012) The effects of land use and climate 
change on the carbon cycle of Europe over the past 500 years. Global Change Biology, 18, 
902-914. 

Kays, R., Crofoot, M.C., Jetz, W. & Wikelski, M. (2015) Terrestrial animal tracking as an eye on life 
and planet. Science, 348. 

Kearney, M. & Porter, W. (2009) Mechanistic niche modelling: combining physiological and spatial 
data to predict species' ranges. Ecology Letters, 12, 334-350. 

Keith, D.A., Akcakaya, H.R., Thuiller, W., Midgley, G.F., Pearson, R.G., Phillips, S.J., Regan, H.M., 
Araujo, M.B. & Rebelo, T.G. (2008) Predicting extinction risks under climate change: 
coupling stochastic population models with dynamic bioclimatic habitat models. Biology 
Letters, 4, 560-563. 

Keitt, T.H., Bjornstad, O.N., Dixon, P.M. & Citron-Pousty, S. (2002) Accounting for spatial pattern 
when modeling organism-environment interactions. Ecography, 25, 616-625. 



www.manaraa.com

 

135 
 

Kissling, W.D. & Carl, G. (2008) Spatial autocorrelation and the selection of simultaneous 
autoregressive models. Global Ecology and Biogeography, 17, 59-71. 

Kissling, W.D., Dormann, C.F., Groeneveld, J., Hickler, T., Kühn, I., McInerny, G.J., Montoya, J.M., 
Römermann, C., Schiffers, K., Schurr, F.M., Singer, A., Svenning, J.-C., Zimmermann, N.E. & 
O’Hara, R.B. (2012) Towards novel approaches to modelling biotic interactions in 
multispecies assemblages at large spatial extents. Journal of Biogeography, 39, 2163-
2178. 

Kissling, W.D. & Schleuning, M. (2015) Multispecies interactions across trophic levels at 
macroscales: retrospective and future directions. Ecography, 38, 346-357. 

Klijn, J.A. (2004) Driving forces behind landscape transformation in Europe, from a conceptual 
approach to policy options. Jongman, RHG–The New Dimension of the European 
Landscapes. Wageningen UR, 201-218. 

Knudsen, E., Lindén, A., Both, C., Jonzén, N., Pulido, F., Saino, N., Sutherland, W.J., Bach, L.A., 
Coppack, T. & Ergon, T. (2011) Challenging claims in the study of migratory birds and 
climate change. Biological Reviews, 86, 928-946. 

Koh, L.P., Dunn, R.R., Sodhi, N.S., Colwell, R.K., Proctor, H.C. & Smith, V.S. (2004) Species 
Coextinctions and the Biodiversity Crisis. Science, 305, 1632-1634. 

Koleff, P., Lennon, J.J. & Gaston, K.J. (2003) Are there latitudinal gradients in species turnover? 
Global Ecology and Biogeography, 12, 483-498. 

Kratina, P., Greig, H.S., Thompson, P.L., Carvalho-Pereira, T.S. & Shurin, J.B. (2012) Warming 
modifies trophic cascades and eutrophication in experimental freshwater communities. 
Ecology, 93, 1421-1430. 

Lampila, S., Orell, M., Belda, E. & Koivula, K. (2006) Importance of adult survival, local recruitment 
and immigration in a declining boreal forest passerine, the willow tit Parus montanus. 
Oecologia, 148, 405-413. 

Landis, J.R. & Koch, G.G. (1977) Measurement of Observer Agreement for Categorical Data. 
Biometrics, 33, 159-174. 

Lawler, J.J., White, D., Neilson, R.P. & Blaustein, A.R. (2006) Predicting climate-induced range 
shifts: model differences and model reliability. Global Change Biology, 12, 1568-1584. 

Lawson, C.R., Bennie, J., Hodgson, J.A., Thomas, C.D. & Wilson, R.J. (2014) Topographic 
microclimates drive microhabitat associations at the range margin of a butterfly. 
Ecography, 37, 732-740. 

Le Viol, I., Jiguet, F., Brotons, L., Herrando, S., Lindstrom, A., Pearce-Higgins, J.W., Reif, J., Van 
Turnhout, C. & Devictor, V. (2012) More and more generalists: two decades of changes in 
the European avifauna. Biology Letters, 8, 780-782. 

Legendre, P. (1993) Spatial Autocorrelation - Trouble or New Paradigm. Ecology, 74, 1659-1673. 
Lemke, H.W., Tarka, M., Klaassen, R.H.G., Akesson, M., Bensch, S., Hasselquist, D. & Hansson, B. 

(2013) Annual Cycle and Migration Strategies of a Trans-Saharan Migratory Songbird: A 
Geolocator Study in the Great Reed Warbler. Plos One, 8, e79209. 

Lemoine, N., Bauer, H.G., Peintinger, M. & Bohning-Gaese, K. (2007) Effects of climate and land-
use change on species abundance in a central European bird community. Conservation 
Biology, 21, 495-503. 

Lemoine, N. & Bohning-Gaese, K. (2003) Potential impact of global climate change on species 
richness of long-distance migrants. Conservation Biology, 17, 577-586. 

Lenoir, J., Gégout, J.C., Marquet, P.A., de Ruffray, P. & Brisse, H. (2008) A Significant Upward Shift 
in Plant Species Optimum Elevation During the 20th Century. Science, 320, 1768-1771. 

Lenoir, J. & Svenning, J.C. (2015) Climate‐related range shifts–a global multidimensional synthesis 
and new research directions. Ecography, 38, 15-28. 

Liaw, A. & Wiener, M. (2002) Classification and Regression by randomForest. R News, 2. 
Lichstein, J.W., Simons, T.R., Shriner, S.A. & Franzreb, K.E. (2002) Spatial autocorrelation and 

autoregressive models in ecology. Ecological Monographs, 72, 445-463. 



www.manaraa.com

 

136 
 

Lobo, J.M., Jimenez-Valverde, A. & Real, R. (2008) AUC: a misleading measure of the performance 
of predictive distribution models. Global Ecology and Biogeography, 17, 145-151. 

Loison, A., Langvatn, R. & Solberg, E.J. (1999) Body mass and winter mortality in red deer calves: 
disentangling sex and climate effects. Ecography, 22, 20-30. 

Lurgi, M., López, B.C. & Montoya, J.M. (2012) Novel communities from climate change. 
Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367, 
2913-2922. 

Mace, G.M., Collar, N.J., Gaston, K.J., Hilton-Taylor, C., AkÇAkaya, H.R., Leader-Williams, N., 
Milner-Gulland, E.J. & Stuart, S.N. (2008) Quantification of Extinction Risk: IUCN's System 
for Classifying Threatened Species 

Cuantificación del Riesgo de Extinción: Sistema de la UICN para la Clasificación de Especies 
Amenazadas. Conservation Biology, 22, 1424-1442. 

Magness, D.R., Huettmann, F. & Morton, J.M. (2008) Using Random Forests to Provide Predicted 
Species Distribution Maps as a Metric for Ecological Inventory & Monitoring Programs. 
Applications of Computational Intelligence in Biology: Current Trends and Open Problems, 
122, 209-229. 

Magurran, A.E. (1988) Ecological Diversity and Its Measurement. Croom Helm. 
Magurran, A.E. (2004) Measuring biological diversity. African Journal of Aquatic Science, 29, 285-

286. 
Magurran, A.E. & Henderson, P.A. (2012) How selection structures species abundance 

distributions. Proceedings of the Royal Society of London B: Biological Sciences, 279, 3722-
3726. 

Mair, L., Hill, J.K., Fox, R., Botham, M., Brereton, T. & Thomas, C.D. (2014) Abundance changes and 
habitat availability drive species' responses to climate change. Nature Climate Change, 4, 
127-131. 

Manel, S., Williams, H.C. & Ormerod, S.J. (2001) Evaluating presence–absence models in ecology: 
the need to account for prevalence. Journal of Applied Ecology, 38, 921-931. 

Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R.K. & Thuiller, W. (2009) Evaluation of 
consensus methods in predictive species distribution modelling. Diversity and 
Distributions, 15, 59-69. 

Martin, Y., Van Dyck, H., Dendoncker, N. & Titeux, N. (2013) Testing instead of assuming the 
importance of land use change scenarios to model species distributions under climate 
change. Global Ecology and Biogeography, 22, 1204-1216. 

McCarthy, M.A., Thompson, C.J.,  & Possingham, H.P. (2005) Theory for Designing Nature 
Reserves for Single Species. The American Naturalist, 165, 250-257. 

McCarthy, M.A., Thompson, C.J., Moore, A.L. & Possingham, H.P. (2011) Designing nature reserves 
in the face of uncertainty. Ecology Letters, 14, 470-475. 

McCarthy, M.A., Thompson, C.J. & Williams, N.S.G. (2006) Logic for Designing Nature Reserves for 
Multiple Species. The American Naturalist, 167, 717-727. 

McCarty, J.P. (2001) Ecological consequences of recent climate change. Conservation Biology, 15, 
320-331. 

Mccullagh, P. (1984) Generalized Linear-Models. European Journal of Operational Research, 16, 
285-292. 

McGeoch, M.A., Butchart, S.H.M., Spear, D., Marais, E., Kleynhans, E.J., Symes, A., Chanson, J. & 
Hoffmann, M. (2010) Global indicators of biological invasion: species numbers, 
biodiversity impact and policy responses. Diversity and Distributions, 16, 95-108. 

McLachlan, J.S., Hellmann, J.J. & Schwartz, M.W. (2007) A framework for debate of assisted 
migration in an era of climate change. Conservation Biology, 21, 297-302. 

McMahon, S.M., Harrison, S.P., Armbruster, W.S., Bartlein, P.J., Beale, C.M., Edwards, M.E., 
Kattge, J., Midgley, G., Morin, X. & Prentice, I.C. (2011) Improving assessment and 



www.manaraa.com

 

137 
 

modelling of climate change impacts on global terrestrial biodiversity. Trends in Ecology & 
Evolution, 26, 249-259. 

McPherson, J.M., Jetz, W. & Rogers, D.J. (2004) The effects of species’ range sizes on the accuracy 
of distribution models: ecological phenomenon or statistical artefact? Journal of Applied 
Ecology, 41, 811-823. 

Menendez, R., Megias, A.G., Hill, J.K., Braschler, B., Willis, S.G., Collingham, Y., Fox, R., Roy, D.B. & 
Thomas, C.D. (2006) Species richness changes lag behind climate change. Proceedings of 
the Royal Society B-Biological Sciences, 273, 1465-1470. 

Menéndez, R., Megías, A.G., Hill, J.K., Braschler, B., Willis, S.G., Collingham, Y., Fox, R., Roy, D.B. & 
Thomas, C.D. (2006) Species richness changes lag behind climate change. Proceedings of 
the Royal Society of London B: Biological Sciences, 273, 1465-1470. 

Menzel, A., Sparks, T.H., Estrella, N., Koch, E., Aasa, A., Ahas, R., Alm-Kubler, K., Bissolli, P., 
Braslavska, O., Briede, A., Chmielewski, F.M., Crepinsek, Z., Curnel, Y., Dahl, A., Defila, C., 
Donnelly, A., Filella, Y., Jatcza, K., Mage, F., Mestre, A., Nordli, O., Penuelas, J., Pirinen, P., 
Remisova, V., Scheifinger, H., Striz, M., Susnik, A., Van Vliet, A.J.H., Wielgolaski, F.E., Zach, 
S. & Zust, A. (2006a) European phenological response to climate change matches the 
warming pattern. Global Change Biology, 12, 1969-1976. 

Menzel, A., Sparks, T.H., Estrella, N., Koch, E., Aasa, A., Ahas, R., Alm-KÜBler, K., Bissolli, P., 
BraslavskÁ, O.G., Briede, A., Chmielewski, F.M., Crepinsek, Z., Curnel, Y., Dahl, Å., Defila, 
C., Donnelly, A., Filella, Y., Jatczak, K., MÅGe, F., Mestre, A., Nordli, Ø., PeÑUelas, J., 
Pirinen, P., RemiŠOvÁ, V., Scheifinger, H., Striz, M., Susnik, A., Van Vliet, A.J.H., 
Wielgolaski, F.-E., Zach, S. & Zust, A.N.A. (2006b) European phenological response to 
climate change matches the warming pattern. Global Change Biology, 12, 1969-1976. 

Merot, P., Squividant, H., Aurousseau, P., Hefting, M., Burt, T., Maitre, V., Kruk, M., Butturini, A., 
Thenail, C. & Viaud, V. (2003) Testing a climato-topographic index for predicting wetlands 
distribution along an European climate gradient. Ecological Modelling, 163, 51-71. 

Mieszkowska, N., Milligan, G., Burrows, M.T., Freckleton, R. & Spencer, M. (2013) Dynamic species 
distribution models from categorical survey data. Journal of Animal Ecology, 82, 1215-
1226. 

Milner, J., Elston, D. & Albon, S. (1999) Estimating the contributions of population density and 
climatic fluctuations to interannual variation in survival of Soay sheep. Journal of Animal 
Ecology, 68, 1235-1247. 

Moilanen, A., Franco, A.M.A., Early, R.I., Fox, R., Wintle, B. & Thomas, C.D. (2005) Prioritizing 
multiple-use landscapes for conservation: methods for large multi-species planning 
problems. Proceedings of the Royal Society of London B: Biological Sciences, 272, 1885-
1891. 

Moles, A.T., Falster, D.S., Leishman, M.R. & Westoby, M. (2004) Small-seeded species produce 
more seeds per square metre of canopy per year, but not per individual per lifetime. 
Journal of Ecology, 92, 384-396. 

Moller, A.P., Rubolini, D. & Lehikoinen, E. (2008) Populations of migratory bird species that did not 
show a phenological response to climate change are declining. Proceedings of the 
National Academy of Sciences of the United States of America, 105, 16195-16200. 

Moore, R.T. (2014) blockTools: Blocking, Assignment, and Diagnosing Interference in Randomized 
Experiments. pp. R package version 0.6-1. 

Moran, P.A.P. (1950) Notes on Continuous Stochastic Phenomena. Biometrika, 37, 17-23. 
Moreau, R.E. (1972) The Palaearctic-Africa Bird Migration Systems. Academic Press, London. 
Moreira, F. & Russo, D. (2007) Modelling the impact of agricultural abandonment and wildfires on 

vertebrate diversity in Mediterranean Europe. Landscape Ecology, 22, 1461-1476. 
Morrison, C.A., Robinson, R.A., Clark, J.A., Risely, K. & Gill, J.A. (2013) Recent population declines 

in Afro-Palaearctic migratory birds: the influence of breeding and non-breeding seasons. 
Diversity and Distributions, 19, 1051-1058. 



www.manaraa.com

 

138 
 

Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., van Vuuren, D.P., Carter, T.R., 
Emori, S., Kainuma, M., Kram, T., Meehl, G.A., Mitchell, J.F.B., Nakicenovic, N., Riahi, K., 
Smith, S.J., Stouffer, R.J., Thomson, A.M., Weyant, J.P. & Wilbanks, T.J. (2010) The next 
generation of scenarios for climate change research and assessment. Nature, 463, 747-
756. 

Mucher, C.A., Steinnocher, K.T., Kressler, F.P. & Heunks, C. (2000) Land cover characterization and 
change detection for environmental monitoring of pan-Europe. International Journal of 
Remote Sensing, 21, 1159-1181. 

Nevoux, M., Barbraud, J.-C. & Barbraud, C. (2008) Breeding experience and demographic response 
to environmental variability in the white stork. The Condor, 110, 55-62. 

New, M., Hulme, M. & Jones, P. (1999) Representing twentieth-century space-time climate 
variability. Part I: Development of a 1961-90 mean monthly terrestrial climatology. 
Journal of Climate, 12, 829-856. 

Newton, I. (2004a) Population limitation in migrants. Ibis, 146, 197-226. 
Newton, I. (2004b) The recent declines of farmland bird populations in Britain: an appraisal of 

causal factors and conservation actions. Ibis, 146, 579-600. 
Newton, I. (2008) The Migration Ecology of Birds. Academic Press. 
Newton, I. (2010) Bird Migration. Harper Collins, London. 
Nicholson, S. (2000) Land surface processes and Sahel climate. Reviews of Geophysics, 38, 117-

139. 
Nielsen, S.E., Johnson, C.J., Heard, D.C. & Boyce, M.S. (2005) Can Models of Presence-Absence be 

Used to Scale Abundance? Two Case Studies Considering Extremes in Life History. 
Ecography, 28, 197-208. 

Nikolov, S.C. (2010) Effects of land abandonment and changing habitat structure on avian 
assemblages in upland pastures of Bulgaria. Bird Conservation International, 20, 200-213. 

Norris, D.R., Marra, P.P., Kyser, T.K., Sherry, T.W. & Ratcliffe, L.M. (2004) Tropical winter habitat 
limits reproductive success on the temperate breeding grounds in a migratory bird. 
Proceedings of the Royal Society of London B: Biological Sciences, 271, 59-64. 

O'Grady, J.J., Reed, D.H., Brook, B.W. & Frankham, R. (2004) What are the best correlates of 
predicted extinction risk? Biological Conservation, 118, 513-520. 

Ockendon, N., Hewson, C.M., Johnston, A. & Atkinson, P.W. (2012) Declines in British-breeding 
populations of Afro-Palaearctic migrant birds are linked to bioclimatic wintering zone in 
Africa, possibly via constraints on arrival time advancement. Bird Study, 59, 111-125. 

Ockendon, N., Johnston, A. & Baillie, S. (2014) Rainfall on wintering grounds affects population 
change in many species of Afro-Palaearctic migrants. Journal of Ornithology, 155, 905-
917. 

Ohlemuller, R., Anderson, B.J., Araujo, M.B., Butchart, S.H.M., Kudrna, O., Ridgely, R.S. & Thomas, 
C.D. (2008) The coincidence of climatic and species rarity: high risk to small-range species 
from climate change. Biology Letters, 4, 568-572. 

Oksanen, J., Blanchet, G., Kindt, R., Legendre, P., Minchinn, R., O'Hara, R.B., Simpson, G.L., 
Solymos, P., Stevens, M.H.H. & Wagner, H. (2015) vegan: Community Ecology Package. R 
package version 2.3-0. http://CRAN.R-project.org/package=vegan. 

Olden, J.D., Lawler, J.J. & Poff, N.L. (2008) Machine learning methods without tears: A primer for 
ecologists. Quarterly Review of Biology, 83, 171-193. 

Oliver, T.H., Gillings, S., Girardello, M., Rapacciuolo, G., Brereton, T.M., Siriwardena, G.M., Roy, 
D.B., Pywell, R. & Fuller, R.J. (2012) Population density but not stability can be predicted 
from species distribution models. Journal of Applied Ecology, 49, 581-590. 

Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V., Underwood, E.C., 
D'amico, J.A., Itoua, I., Strand, H.E. & Morrison, J.C. (2001) Terrestrial Ecoregions of the 
World: A New Map of Life on Earth A new global map of terrestrial ecoregions provides an 
innovative tool for conserving biodiversity. Bioscience, 51, 933-938. 

http://cran.r-project.org/package=vegan


www.manaraa.com

 

139 
 

Orme, D., Freckleton, R.P., Thomas, G., Petzoldt, T., Fritz, S., Isaac, N. & Pearse, W. (2012) caper: 
Comparative Analyses of Phylogenetics and Evolution in R. 

Osiejuk, T., Kuczynski, L., Jermaczek, A. & Tryjanovski, P. (1999) The effect of water conditions on 
breeding bird commnunities of pastures, meadows and shrub habitats in the Slonsk 
reserve, NW Poland. BIOLOGIA-BRATISLAVA-, 54, 207-214. 

Ottersen, G. & Loeng, H. (2000) Covariability in early growth and year-class strength of Barents 
Sea cod, haddock, and herring: the environmental link. ICES Journal of Marine Science: 
Journal du Conseil, 57, 339-348. 

Pagel, J. & Schurr, F.M. (2012) Forecasting species ranges by statistical estimation of ecological 
niches and spatial population dynamics. Global Ecology and Biogeography, 21, 293-304. 

Pagel, M.D., Harvey, P.H. & Godfray, H.C.J. (1991) Species-Abundance, Biomass, and Resource-Use 
Distributions. The American Naturalist, 138, 836-850. 

Paillisson, J.M., Reeber, S. & Marion, L. (2002) Bird assemblages as bio-indicators of water regime 
management and hunting disturbance in natural wet grasslands. Biological Conservation, 
106, 115-127. 

Pannekoek, J. & van Strien, A.J. (2001) TRIM 3 Manual. TRends and Indices for Monitoring Data. 
Research paper no. 0102. CBS Voorburg, The Netherlands: Statistics Netherlands. 

Parmesan, C., Burrows, M.T., Duarte, C.M., Poloczanska, E.S., Richardson, A.J., Schoeman, D.S. & 
Singer, M.C. (2013) Beyond climate change attribution in conservation and ecological 
research. Ecology Letters, 16, 58-71. 

Parmesan, C., Root, T.L. & Willig, M.R. (2000) Impacts of Extreme Weather and Climate on 
Terrestrial Biota*. Bulletin of the American Meteorological Society, 81, 443-450. 

Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J.K., Thomas, C.D., Descimon, H., Huntley, B., Kaila, 
L., Kullberg, J., Tammaru, T., Tennent, W.J., Thomas, J.A. & Warren, M. (1999) Poleward 
shifts in geographical ranges of butterfly species associated with regional warming. 
Nature, 399, 579-583. 

Parmesan, C. & Yohe, G. (2003) A globally coherent fingerprint of climate change impacts across 
natural systems. Nature, 421, 37-42. 

Pauli, H., Gottfried, M. & Grabherr, G. (1996) Effects of climate change on mountain ecosystems–
upward shifting of alpine plants. World resource review, 8, 382-390. 

Peach, W.J., Hanmer, D.B. & Oatley, T.B. (2001) Do southern African songbirds live longer than 
their European counterparts? Oikos, 93, 235-249. 

Pearce-Higgins, J.W., Eglington, S.M., Martay, B. & Chamberlain, D.E. (2015) Drivers of climate 
change impacts on bird communities. Journal of Animal Ecology, 84, 943-954. 

Pearce-Higgins, J.W. & Green, R.E. (2014) Birds and Climate Change: Impacts and Conservation 
Responses. Cambridge University Press. 

Pearce-Higgins, J.W. & Yalden, D.W. (2003) Variation in the use of pasture by breeding European 
Golden Plovers Pluvialis apricaria in relation to prey availability. Ibis, 145, 365-381. 

Pearce-Higgins, J.W. & Yalden, D.W. (2004) Habitat selection, diet, arthropod availability and 
growth of a moorland wader: the ecology of European Golden Plover Pluvialis apricaria 
chicks. Ibis, 146, 335-346. 

Pearce-Higgins, J.W., Yalden, D.W. & Whittingham, M.J. (2005) Warmer springs advance the 
breeding phenology of golden plovers Pluvialis apricaria and their prey (Tipulidae). 
Oecologia, 143, 470-476. 

Pearce, J. & Ferrier, S. (2000) Evaluating the predictive performance of habitat models developed 
using logistic regression. Ecological Modelling, 133, 225-245. 

Pearce, J. & Ferrier, S. (2001) The practical value of modelling relative abundance of species for 
regional conservation planning: a case study. Biological Conservation, 98, 33-43. 

Pearson, D.J. & Lack, P.C. (1992) Migration patterns and habitat use by passerine and near-
passerine migrant birds in eastern Africa. Ibis, 134, 89-98. 



www.manaraa.com

 

140 
 

Pearson, R.G. & Dawson, T.P. (2003) Predicting the impacts of climate change on the distribution 
of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12, 
361-371. 

Pearson, R.G., Dawson, T.P. & Liu, C. (2004) Modelling species distributions in Britain: a 
hierarchical integration of climate and land-cover data. Ecography, 27, 285-298. 

Pearson, R.G., Thuiller, W., Araújo, M.B., Martinez-Meyer, E., Brotons, L., McClean, C., Miles, L., 
Segurado, P., Dawson, T.P. & Lees, D.C. (2006) Model-based uncertainty in species range 
prediction. Journal of Biogeography, 33, 1704-1711. 

PECBMS (2009) The State of Europe’s Common Birds, 2008. CSO/RSPB, Prague, Czech Republic. 
Pereira, H.M., Leadley, P.W., Proenca, V., Alkemade, R., Scharlemann, J.P.W., Fernandez-

Manjarres, J.F., Araujo, M.B., Balvanera, P., Biggs, R., Cheung, W.W.L., Chini, L., Cooper, 
H.D., Gilman, E.L., Guenette, S., Hurtt, G.C., Huntington, H.P., Mace, G.M., Oberdorff, T., 
Revenga, C., Rodrigues, P., Scholes, R.J., Sumaila, U.R. & Walpole, M. (2010) Scenarios for 
Global Biodiversity in the 21st Century. Science, 330, 1496-1501. 

Perez, J., Menendez, M., Mendez, F. & Losada, I. (2014) Evaluating the performance of CMIP3 and 
CMIP5 global climate models over the north-east Atlantic region. Climate Dynamics, 43, 
2663-2680. 

Petchey, O.L. & Gaston, K.J. (2002) Functional diversity (FD), species richness and community 
composition. Ecology Letters, 5, 402-411. 

Peters, R.H. (1986) The Ecological Implications of Body Size. Cambridge University Press. 
Pienkowski, M.W. (1984) Breeding biology and population dynamics of Ringed plovers Charadrius 

hiaticula in Britain and Greenland: nest‐predation as a possible factor limiting distribution 
and timing of breeding. Journal of Zoology, 202, 83-114. 

Pillar, V.D., Blanco, C.C., Müller, S.C., Sosinski, E.E., Joner, F. & Duarte, L.D.S. (2013) Functional 
redundancy and stability in plant communities. Journal of Vegetation Science, 24, 963-
974. 

Pollard, E. & Yates, T.J. (1994) Monitoring butterflies for ecology and conservation: the British 
butterfly monitoring scheme. Springer. 

Poloczanska, E.S., Brown, C.J., Sydeman, W.J., Kiessling, W., Schoeman, D.S., Moore, P.J., Brander, 
K., Bruno, J.F., Buckley, L.B. & Burrows, M.T. (2013) Global imprint of climate change on 
marine life. Nature Climate Change, 3, 919-925. 

Pounds, J.A., Fogden, M.P.L. & Campbell, J.H. (1999) Biological response to climate change on a 
tropical mountain. Nature, 398, 611-615. 

Prasad, A.M., Iverson, L.R. & Liaw, A. (2006) Newer classification and regression tree techniques: 
Bagging and random forests for ecological prediction. Ecosystems, 9, 181-199. 

Prentice, I.C., Cramer, W., Harrison, S.P., Leemans, R., Monserud, R.A. & Solomon, A.M. (1992) A 
Global Biome Model Based on Plant Physiology and Dominance, Soil Properties and 
Climate. Journal of Biogeography, 19, 117-134. 

Preston, C.D., Pearman, D.A. & Dines, T.D. (2002) New atlas of the British and Irish flora. An atlas 
of the vascular plants of Britain, Ireland, the Isle of Man and the Channel Islands. Oxford 
University Press. 

Pulliam, H.R. (2000) On the relationship between niche and distribution. Ecology Letters, 3, 349-
361. 

R Core Team (2014) R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. 

R Development Core Team (2012) R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. 

Ramankutty, N., Foley, J.A., Norman, J. & McSweeney, K. (2002) The global distribution of 
cultivable lands: current patterns and sensitivity to possible climate change. Global 
Ecology and Biogeography, 11, 377-392. 



www.manaraa.com

 

141 
 

Record, S., Fitzpatrick, M.C., Finley, A.O., Veloz, S. & Ellison, A.M. (2013) Should species 
distribution models account for spatial autocorrelation? A test of model projections 
across eight millennia of climate change. Global Ecology and Biogeography, 22, 760-771. 

Reif, J., Hořák, D., Krištín, A., Kopsová, L. & Devictor, V. (2015) Linking habitat specialization with 
species’ traits in European birds. Oikos, DOI: 10.1111/oik.02276. 

Reineking, B. & der, B.S. (2006) Constrain to perform: Regularization of habitat models. Ecological 
Modelling, 193, 675-690. 

Renfrew, R.B., Kim, D., Perlut, N., Smith, J., Fox, J. & Marra, P.P. (2013) Phenological matching 
across hemispheres in a long-distance migratory bird. Diversity and Distributions, 19, 
1008-1019. 

Renwick, A.R., Massimino, D., Newson, S.E., Chamberlain, D.E., Pearce-Higgins, J.W. & Johnston, 
A. (2012) Modelling changes in species’ abundance in response to projected climate 
change. Diversity and Distributions, 18, 121-132. 

Richards, S.A. (2008) Dealing with overdispersed count data in applied ecology. Journal of Applied 
Ecology, 45, 218-227. 

Robertson, M.P., Cumming, G.S. & Erasmus, B.F.N. (2010) Getting the most out of atlas data. 
Diversity and Distributions, 16, 363-375. 

Robinson, R.A., Baillie, S.R. & Crick, H.Q. (2007) Weather‐dependent survival: implications of 
climate change for passerine population processes. Ibis, 149, 357-364. 

Robinson, R.A., Balmer, D.E. & Marchant, J.H. (2008) Survival rates of hirundines in relation to 
British and African rainfall. Ringing & Migration, 24, 1-6. 

Robinson, R.A., Crick, H.Q., Learmonth, J.A., Maclean, I., Thomas, C.D., Bairlein, F., Forchhammer, 
M.C., Francis, C.M., Gill, J.A. & Godley, B.J. (2009) Travelling through a warming world: 
climate change and migratory species. Endangered Species Research, 7, 87-99. 

Robinson, W.D., Bowlin, M.S., Bisson, I., Shamoun-Baranes, J., Thorup, K., Diehl, R.H., Kunz, T.H., 
Mabey, S. & Winkler, D.W. (2010) Integrating concepts and technologies to advance the 
study of bird migration. Frontiers in Ecology and the Environment, 8, 354-361. 

Robnik-Sikonja, M. (2004) Improving random forests. Machine Learning: Ecml 2004, Proceedings, 
3201, 359-370. 

Rolland, J., Cadotte, M.W., Davies, J., Devictor, V., Lavergne, S., Mouquet, N., Pavoine, S., 
Rodrigues, A., Thuiller, W., Turcati, L., Winter, M., Zupan, L., Jabot, F. & Morlon, H. (2012) 
Using phylogenies in conservation: new perspectives. Biology Letters, 8, 692-694. 

Romao, C. & Reker, J. (2012) Protected areas in Europe - an overview. pp. 130. European 
Environment Agency, Copenhagen. 

Root, T.L., Price, J.T., Hall, K.R., Schneider, S.H., Rosenzweig, C. & Pounds, J.A. (2003) Fingerprints 
of global warming on wild animals and plants. Nature, 421, 57-60. 

Rounsevell, M.D.A., Pedroli, B., Erb, K.-H., Gramberger, M., Busck, A.G., Haberl, H., Kristensen, S., 
Kuemmerle, T., Lavorel, S., Lindner, M., Lotze-Campen, H., Metzger, M.J., Murray-Rust, D., 
Popp, A., Pérez-Soba, M., Reenberg, A., Vadineanu, A., Verburg, P.H. & Wolfslehner, B. 
(2012) Challenges for land system science. Land Use Policy, 29, 899-910. 

Runge, C.A., Martini, T.G., Possingham, H.P., Willis, S.G. & Fuller, R.A. (2014) Conserving mobile 
species. Frontiers in Ecology and the Environment, 12, 395-402. 

Rushton, S.P., Ormerod, S.J. & Kerby, G. (2004) New paradigms for modelling species 
distributions? Journal of Applied Ecology, 41, 193-200. 

Saether, B. & Engen, S. (2010) Popualtion consequences of climate change. Effects of Climate 
Change on Birds (eds A.P. Moller, W. Fiedler & P. Berthold). Oxford University Press Inc., 
United States. 

Sætre, G.-P., Post, E. & Král, M. (1999) Can environmental fluctuation prevent competitive 
exclusion in sympatric flycatchers? Proceedings of the Royal Society of London B: 
Biological Sciences, 266, 1247-1251. 



www.manaraa.com

 

142 
 

Saino, N., Ambrosini, R., Rubolini, D., von Hardenberg, J., Provenzale, A., Huppop, K., Huppop, O., 
Lehikoinen, A., Lehikoinen, E., Rainio, K., Romano, M. & Sokolov, L. (2011) Climate 
warming, ecological mismatch at arrival and population decline in migratory birds. 
Proceedings of the Royal Society B-Biological Sciences, 278, 835-842. 

Saino, N., Rubolini, D., Ambrosini, R., Romano, M., Scandolara, C., Fairhurst, G., Caprioli, M., 
Romano, A., Sicurella, B. & Liechti, F. (2015) Light-level geolocators reveal covariation 
between winter plumage molt and phenology in a trans-Saharan migratory bird. 
Oecologia, 178, 1105-1112. 

Saino, N., Szep, T., Romano, M., Rubolini, D., Spina, F. & Moller, A.P. (2004) Ecological conditions 
during winter predict arrival date at the breeding quarters in a trans-Saharan migratory 
bird. Ecology Letters, 7, 21-25. 

Salewski, V. & Jones, P. (2006) Palearctic passerines in Afrotropical environments: a review. 
Journal of Ornithology, 147, 192-201. 

Sanderson, E.W., Jaiteh, M., Levy, M.A., Redford, K.H., Wannebo, A.V. & Woolmer, G. (2002) The 
human footprint and the last of the wild. Bioscience, 52, 891-904. 

Sanderson, F.J., Donald, P.F., Pain, D.J., Burfield, I.J. & van Bommel, F.P.J. (2006) Long-term 
population declines in Afro-Palearctic migrant birds. Biological Conservation, 131, 93-105. 

Sanderson, F.J., Pople, R.G., Ieronymidou, C., Burfield, I.J., Gregory, R.D., Willis, S.G., Howard, C., 
Stephens, P.A., Beresford, A.E. & Donald, P.F. (2015) Assessing the performance of EU 
nature legislation in protecting target bird species in an era of climate change. 
Conservation Letters, DOI: 10.1111/conl.12196. 

Santika, T. (2011) Assessing the effect of prevalence on the predictive performance of species 
distribution models using simulated data. Global Ecology and Biogeography, 20, 181-192. 

Sauer, J.R., Hines, J.E., Fallon, J.E., Pardieck, K.L., Ziolkowski Jr., D.J. & Link, W.A. (2012) The North 
American Breeding Bird Survey, Results and Analysis 1966 - 2011. Version 07.03.2013 
USGS Patuxent Wildlife Research Center, Laurel, MD [Online]. Available: http://www.mbr-
pwrc.usgs.gov/bbs/. 

Saura, S., Bodin, Ö. & Fortin, M.-J. (2014) EDITOR'S CHOICE: Stepping stones are crucial for 
species' long-distance dispersal and range expansion through habitat networks. Journal of 
Applied Ecology, 51, 171-182. 

Schaub, M., Martinez, N., Tagmann-Ioset, A., Weisshaupt, N., Maurer, M.L., Reichlin, T.S., Abadi, 
F., Zbinden, N., Jenni, L. & Arlettaz, R. (2010) Patches of Bare Ground as a Staple 
Commodity for Declining Ground-Foraging Insectivorous Farmland Birds. Plos One, 5, 
e13115. 

Schmaljohann, H., Buchmann, M., Fox, J. & Bairlein, F. (2012) Tracking migration routes and the 
annual cycle of a trans-Sahara songbird migrant. Behavioral Ecology and Sociobiology, 66, 
915-922. 

Schmid, M., Hothorn, T., Maloney, K.O., Weller, D.E. & Potapov, S. (2011) Geoadditive regression 
modeling of stream biological condition. Environmental and Ecological Statistics, 18, 709-
733. 

Scholander, P.F. (1955) Evolution of Climatic Adaptation in Homeotherms. Evolution, 9, 15-26. 
Schroder, B. & Seppelt, R. (2006) Analysis of pattern-process interactions based on landscape 

models - Overview, general concepts, and methodological issues. Ecological Modelling, 
199, 505-516. 

Schurr, F.M., Pagel, J., Cabral, J.S., Groeneveld, J., Bykova, O., O’Hara, R.B., Hartig, F., Kissling, 
W.D., Linder, H.P., Midgley, G.F., Schröder, B., Singer, A. & Zimmermann, N.E. (2012) How 
to understand species’ niches and range dynamics: a demographic research agenda for 
biogeography. Journal of Biogeography, 39, 2146-2162. 

Schwartz, M.D., Ahas, R. & Aasa, A. (2006) Onset of spring starting earlier across the Northern 
Hemisphere. Global Change Biology, 12, 343-351. 

http://www.mbr-pwrc.usgs.gov/bbs/
http://www.mbr-pwrc.usgs.gov/bbs/


www.manaraa.com

 

143 
 

Segurado, P. & Araújo, M.B. (2004) An evaluation of methods for modelling species distributions. 
Journal of Biogeography, 31, 1555-1568. 

Segurado, P., Araujo, M.B. & Kunin, W.E. (2006) Consequences of spatial autocorrelation for 
niche-based models. Journal of Applied Ecology, 43, 433-444. 

Seifert, L.I., de Castro, F., Marquart, A., Gaedke, U., Weithoff, G. & Vos, M. (2014) Heated 
Relations: Temperature-Mediated Shifts in Consumption across Trophic Levels. Plos One, 
9, e95046. 

Sillett, T.S. & Holmes, R.T. (2002) Variation in survivorship of a migratory songbird throughout its 
annual cycle. Journal of Animal Ecology, 71, 296-308. 

Sillett, T.S., Holmes, R.T. & Sherry, T.W. (2000) Impacts of a global climate cycle on population 
dynamics of a migratory songbird. Science, 288, 2040-2042. 

Sirami, C., Brotons, L., Burfield, I., Fonderflick, J. & Martin, J.-L. (2008) Is land abandonment having 
an impact on biodiversity? A meta-analytical approach to bird distribution changes in the 
north-western Mediterranean. Biological Conservation, 141, 450-459. 

Smith, D.A., Ralls, K., Cypher, B.L., Clark, H.O., Kelly, P.A., Williams, D.F. & Maldonado, J.E. (2006) 
Relative abundance of endangered San Joaquin kit foxes (Vulpes macrotis mutica) based 
on scat-detection dog surveys. Southwestern Naturalist, 51, 210-219. 

Snickars, M., Gullström, M., Sundblad, G., Bergström, U., Downie, A.L., Lindegarth, M. & Mattila, J. 
(2014) Species–environment relationships and potential for distribution modelling in 
coastal waters. Journal of Sea Research, 85, 116-125. 

Snow, D., Perrins, C., Hillcoat, B., Gillmor, R. & Roselaar, C. (1997) The birds of the Western 
Palearctic. Oxford University Press, Oxford. 

Stenseth, N.C., Mysterud, A., Ottersen, G., Hurrell, J.W., Chan, K.S. & Lima, M. (2002) Ecological 
effects of climate fluctuations. Science, 297, 1292-1296. 

Stephens, P.A., Pettorelli, N., Barlow, J., Whittingham, M.J. & Cadotte, M.W. (2015) Management 
by proxy? The use of indices in applied ecology. Journal of Applied Ecology, 52, 1-6. 

Stewart, A.J.A. (2001) The impact of deer on lowland woodland invertebrates: a review of the 
evidence and priorities for future research. Forestry, 74, 259-270. 

Stocker, T.F., Dahe, Q. & Plattner, G.-K. (2013) Climate Change 2013: The Physical Science Basis. 
Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental 
Panel on Climate Change. Summary for Policymakers (IPCC, 2013). 

Stralberg, D., Jongsomjit, D., Howell, C.A., Snyder, M.A., Alexander, J.D., Wiens, J.A. & Root, T.L. 
(2009) Re-Shuffling of Species with Climate Disruption: A No-Analog Future for California 
Birds? Plos One, 4, e6825. 

Strobl, C., Boulesteix, A.L., Kneib, T., Augustin, T. & Zeileis, A. (2008) Conditional variable 
importance for random forests. Bmc Bioinformatics, 9, doi:10.1186/1471-2105-1189-
1307. 

Strobl, C., Hothorn, T. & Zeileis, A. (2009a) Party on! R Journal, 1, 14-17. 
Strobl, C., Hothorn, T. & Zeileis, A. (2009b) Party on!  A New, Conditional Variable Importance 

Measure for Random Forests Available in the party Package. The R Journal, 1, 14-17. 
Strobl, C., Malley, J. & Tutz, G. (2009) An Introduction to Recursive Partitioning: Rationale, 

Application, and Characteristics of Classification and Regression Trees, Bagging, and 
Random Forests. Psychological Methods, 14, 323-348. 

Studds, C.E. & Marra, P.P. (2005) Nonbreeding habitat occupancy and population processes: an 
upgrade experiment with a migratory bird. Ecology, 86, 2380-2385. 

Tappan, G.G., Sall, M., Wood, E.C. & Cushing, M. (2004) Ecoregions and land cover trends in 
Senegal. Journal of arid environments, 59, 427-462. 

Thaxter, C.B., Joys, A.C., Gregory, R.D., Baillie, S.R. & Noble, D.G. (2010) Hypotheses to explain 
patterns of population change among breeding bird species in England. Biological 
Conservation, 143, 2006-2019. 



www.manaraa.com

 

144 
 

Theis, S.E., Hense, A. & Damrath, U. (2005) Probabilistic precipitation forecasts from a 
deterministic model: a pragmatic approach. Meteorological Applications, 12, 257-268. 

Thirgood, S.J., Redpath, S.M., Haydon, D.T., Rothery, P., Newton, I. & Hudson, P.J. (2000) Habitat 
loss and raptor predation: disentangling long–and short–term causes of red grouse 
declines. Proceedings of the Royal Society of London B: Biological Sciences, 267, 651-656. 

Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Erasmus, 
B.F.N., de Siqueira, M.F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, 
A.S., Midgley, G.F., Miles, L., Ortega-Huerta, M.A., Peterson, A.T., Phillips, O.L. & Williams, 
S.E. (2004) Extinction risk from climate change. Nature, 427, 145-148. 

Thuiller, W. (2003) BIOMOD - optimizing predictions of species distributions and projecting 
potential future shifts under global change. Global Change Biology, 9, 1353-1362. 

Thuiller, W., Araujo, M.B. & Lavorel, S. (2004) Do we need land-cover data to model species 
distributions in Europe? Journal of Biogeography, 31, 353-361. 

Thuiller, W., Lavergne, S., Roquet, C., Boulangeat, I., Lafourcade, B. & Araujo, M.B. (2011) 
Consequences of climate change on the tree of life in Europe. Nature, 470, 531-534. 

Thuiller, W., Lavorel, S., Araujo, M.B., Sykes, M.T. & Prentice, I.C. (2005) Climate change threats to 
plant diversity in Europe. Proceedings of the National Academy of Sciences of the United 
States of America, 102, 8245-8250. 

Thuiller, W., Vayreda, J., Pino, J., Sabate, S., Lavorel, S. & Gracia, C. (2003) Large-scale 
environmental correlates of forest tree distributions in Catalonia (NE Spain). Global 
Ecology and Biogeography, 12, 313-325. 

Tilman, D. & Kareiva, P.M. (1997) Spatial Ecology: The Role of Space in Population Dynamics and 
Interspecific Interactions. Princeton University Press. 

Tittensor, D.P., Walpole, M., Hill, S.L.L., Boyce, D.G., Britten, G.L., Burgess, N.D., Butchart, S.H.M., 
Leadley, P.W., Regan, E.C., Alkemade, R., Baumung, R., Bellard, C., Bouwman, L., Bowles-
Newark, N.J., Chenery, A.M., Cheung, W.W.L., Christensen, V., Cooper, H.D., Crowther, 
A.R., Dixon, M.J.R., Galli, A., Gaveau, V., Gregory, R.D., Gutierrez, N.L., Hirsch, T.L., Höft, 
R., Januchowski-Hartley, S.R., Karmann, M., Krug, C.B., Leverington, F.J., Loh, J., Lojenga, 
R.K., Malsch, K., Marques, A., Morgan, D.H.W., Mumby, P.J., Newbold, T., Noonan-
Mooney, K., Pagad, S.N., Parks, B.C., Pereira, H.M., Robertson, T., Rondinini, C., Santini, L., 
Scharlemann, J.P.W., Schindler, S., Sumaila, U.R., Teh, L.S.L., van Kolck, J., Visconti, P. & 
Ye, Y. (2014) A mid-term analysis of progress toward international biodiversity targets. 
Science, 346, 241-244. 

Tøttrup, A.P., Klaassen, R.H.G., Strandberg, R., Thorup, K., Kristensen, M.W., Jørgensen, P.S., Fox, 
J., Afanasyev, V., Rahbek, C. & Alerstam, T. (2011) The annual cycle of a trans-equatorial 
Eurasian–African passerine migrant: different spatio-temporal strategies for autumn and 
spring migration. Proceedings of the Royal Society of London B: Biological Sciences, 279, 
1008-1016. 

Trierweiler, C., Klaassen, R.H., Drent, R.H., Exo, K.-M., Komdeur, J., Bairlein, F. & Koks, B.J. (2014) 
Migratory connectivity and population-specific migration routes in a long-distance 
migratory bird. Proceedings of the Royal Society of London B: Biological Sciences, 281, 
20132897. 

University of East Anglia Climatic Research Unit; Jones, P.D.H., I. (2013) CRU TS3.20: Climatic 
Research Unit (CRU) Time-Series (TS) Version 3.20 of High Resolution Gridded Data of 
Month-by-month Variation in Climate (Jan. 1901 - Dec. 2011). NCAS British Atmospheric 
Data Centre http://catalogue.ceda.ac.uk/uuid/2949a8a25b375c9e323c53f6b6cb2a3a. 

Vallecillo, S., Brotons, L. & Thuiller, W. (2009) Dangers of predicting bird species distributions in 
response to land-cover changes. Ecological Applications, 19, 538-549. 

Van Horne, B. (1983) Density as a Misleading Indicator of Habitat Quality. The Journal of Wildlife 
Management, 47, 893-901. 

http://catalogue.ceda.ac.uk/uuid/2949a8a25b375c9e323c53f6b6cb2a3a


www.manaraa.com

 

145 
 

van Turnhout, C.A.M., Hagemeijer, E.J.M. & Foppen, R.P.B. (2010) Long-Term Population 
Developments in Typical Marshland Birds in The Netherlands. Ardea, 98, 283-299. 

Van Zanten, B.T., Verburg, P.H., Espinosa, M., Gomez-y-Paloma, S., Galimberti, G., Kantelhardt, J., 
Kapfer, M., Lefebvre, M., Manrique, R. & Piorr, A. (2014) European agricultural 
landscapes, common agricultural policy and ecosystem services: a review. Agronomy for 
sustainable development, 34, 309-325. 

VanDerWal, J., Shoo, L.P., Johnson, C.N. & Williams, S.E. (2009) Abundance and the Environmental 
Niche: Environmental Suitability Estimated from Niche Models Predicts the Upper Limit of 
Local Abundance. American Naturalist, 174, 282-291. 

Vaz, S., Martin, C.S., Eastwood, P.D., Ernande, B., Carpentier, A., Meaden, G.J. & Coppin, F. (2008) 
Modelling Species Distributions Using Regression Quantiles. Journal of Applied Ecology, 
45, 204-217. 

Verburg, P.H., Neumann, K. & Nol, L. (2011) Challenges in using land use and land cover data for 
global change studies. Global Change Biology, 17, 974-989. 

Verhoeven, J.T.A. (2014) Wetlands in Europe: Perspectives for restoration of a lost paradise. 
Ecological Engineering, 66, 6-9. 

Vickery, J.A., Ewing, S.R., Smith, K.W., Pain, D.J., Bairlein, F., Škorpilová, J. & Gregory, R.D. (2014) 
The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis, 156, 
1-22. 

Vickery, J.A., Tallowin, J.R., Feber, R.E., Asteraki, E.J., Atkinson, P.W., Fuller, R.J. & Brown, V.K. 
(2001) The management of lowland neutral grasslands in Britain: effects of agricultural 
practices on birds and their food resources. Journal of Applied Ecology, 38, 647-664. 

Vincenzi, S., Zucchetta, M., Franzoi, P., Pellizzato, M., Pranovi, F., De Leo, G.A. & Torricelli, P. 
(2011) Application of a Random Forest algorithm to predict spatial distribution of the 
potential yield of Ruditapes philippinarum in the Venice lagoon, Italy. Ecological 
Modelling, 222, 1471-1478. 

Virkkala, R., Heikkinen, R.K., Lehikoinen, A. & Valkama, J. (2014) Matching trends between recent 
distributional changes of northern-boreal birds and species-climate model predictions. 
Biological Conservation, 172, 124-127. 

Virkkala, R., Heikkinen, R.K., Leikola, N. & Luoto, M. (2008) Projected large-scale range reductions 
of northern-boreal land bird species due to climate change. Biological Conservation, 141, 
1343-1353. 

Virkkala, R. & Lehikoinen, A. (2014) Patterns of climate-induced density shifts of species: poleward 
shifts faster in northern boreal birds than in southern birds. Global Change Biology, 20, 
2995-3003. 

Visser, M., Holleman, L.M. & Gienapp, P. (2006) Shifts in caterpillar biomass phenology due to 
climate change and its impact on the breeding biology of an insectivorous bird. Oecologia, 
147, 164-172. 

Visser, M.E., Adriaensen, F., van Balen, J.H., Blondel, J., Dhondt, A.A., van Dongen, S., Chris, d.F., 
Ivankina, E.V., Kerimov, A.B., de Laet, J., Matthysen, E., McCleery, R., Orell, M. & 
Thomson, D.L. (2003) Variable responses to large-scale climate change in European Parus 
populations. Proceedings of the Royal Society of London B: Biological Sciences, 270, 367-
372. 

Visser, M.E. & Both, C. (2005) Shifts in phenology due to global climate change: the need for a 
yardstick. Proceedings of the Royal Society of London B: Biological Sciences, 272, 2561-
2569. 

Visser, M.E., Both, C. & Lambrechts, M.M. (2004) Global climate change leads to mistimed avian 
reproduction. Advances in ecological research, 35, 89-110. 

Visser, M.E., Noordwijk, A.J.v., Tinbergen, J.M. & Lessells, C.M. (1998) Warmer springs lead to 
mistimed reproduction in great tits (Parus major). Proceedings of the Royal Society of 
London B: Biological Sciences, 265, 1867-1870. 



www.manaraa.com

 

146 
 

Voigt, W., Perner, J., Davis, A.J., Eggers, T., Schumacher, J., Bährmann, R., Fabian, B., Heinrich, W., 
Köhler, G. & Lichter, D. (2003) Trophic levels are differentially sensitive to climate. 
Ecology, 84, 2444-2453. 

Vorisek, P., Jiguet, F., Van Strien, A., Skorpilova, J., Klvanova, A. & Gregory, R.D. (2010) Trends in 
abundance and biomass of widespread European farmland birds: how much have we 
lost? Lowland Farmland Birds III: delivering solutions in an uncertain world. BOU 
Proceedings. 

Vorosmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., 
Bunn, S.E., Sullivan, C.A., Liermann, C.R. & Davies, P.M. (2010) Global threats to human 
water security and river biodiversity. Nature, 467, 555-561. 

Vorpahl, P., Elsenbeer, H., Märker, M. & Schröder, B. (2012) How can statistical models help to 
determine driving factors of landslides? Ecological Modelling, 239, 27-39. 

Vos, C.C., Berry, P., Opdam, P., Baveco, H., Nijhof, B., O’Hanley, J., Bell, C. & Kuipers, H. (2008) 
Adapting landscapes to climate change: examples of climate-proof ecosystem networks 
and priority adaptation zones. Journal of Applied Ecology, 45, 1722-1731. 

Walther, G.R. (2010) Community and ecosystem responses to recent climate change. Philos Trans 
R Soc Lond B Biol Sci, 365, 2019-2024. 

Walther, G.R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin, J.M., 
Hoegh-Guldberg, O. & Bairlein, F. (2002) Ecological responses to recent climate change. 
Nature, 416, 389-395. 

Wang, J., Pierce, G.J., Boyle, P.R., Denis, V., Robin, J.-P. & Bellido, J.M. (2003) Spatial and temporal 
patterns of cuttlefish (Sepia officinalis) abundance and environmental influences–a case 
study using trawl fishery data in French Atlantic coastal, English Channel, and adjacent 
waters. ICES Journal of Marine Science: Journal du Conseil, 60, 1149-1158. 

Warren, D.L., Cardillo, M., Rosauer, D.F. & Bolnick, D.I. (2014) Mistaking geography for biology: 
inferring processes from species distributions. Trends in Ecology & Evolution, 29, 572-580. 

Warren, M.S., Hill, J.K., Thomas, J.A., Asher, J., Fox, R., Huntley, B., Roy, D.B., Telfer, M.G., 
Jeffcoate, S., Harding, P., Jeffcoate, G., Willis, S.G., Greatorex-Davies, J.N., Moss, D. & 
Thomas, C.D. (2001) Rapid responses of British butterflies to opposing forces of climate 
and habitat change. Nature, 414, 65-69. 

Wenny, D.G., DeVault, T.L., Johnson, M.D., Kelly, D., Sekercioglu, C.H., Tomback, D.F. & Whelan, 
C.J. (2011) The Need to Quantify Ecosystem Services Provided by Birds. Auk, 128, 1-14. 

Whelan, C.J., Wenny, D.G. & Marquis, R.J. (2008) Ecosystem services provided by birds. Year in 
Ecology and Conservation Biology 2008, 1134, 25-60. 

Whitfield, D.P., Fielding, A.H., McLeod, D.R.A. & Haworth, P.F. (2004) The effects of persecution 
on age of breeding and territory occupation in golden eagles in Scotland. Biological 
Conservation, 118, 249-259. 

Whittaker, R.J., Nogués-Bravo, D. & Araújo, M.B. (2007) Geographical gradients of species 
richness: a test of the water-energy conjecture of Hawkins et al. (2003) using European 
data for five taxa. Global Ecology and Biogeography, 16, 76-89. 

Wiens, J.A., Stralberg, D., Jongsomjit, D., Howell, C.A. & Snyder, M.A. (2009) Niches, models, and 
climate change: Assessing the assumptions and uncertainties. Proceedings of the National 
Academy of Sciences, 106, 19729-19736. 

Wilcove, D.S. & Wikelski, M. (2008) Going, going, gone: Is animal migration disappearing? Plos 
Biology, 6, 1361-1364. 

Williams, P., Hannah, L., Andelman, S., Midgley, G., AraúJo, M., Hughes, G., Manne, L., Martinez 
Meyer, E. & Pearson, R. (2005) Planning for climate change: identifying 
minimum‐dispersal corridors for the Cape proteaceae. Conservation Biology, 19, 1063-
1074. 

Williams, P., Humphries, C., Araújo, M., Lampinen, R., Hagemeijer, W., Gasc, J. & Mitchell-Jones, T. 
(2000) Endemism and important areas for representing European biodiversity: a 



www.manaraa.com

 

147 
 

preliminary exploration of atlas data for plants and terrestrial vertebrates. Belgian Journal 
of entomology, 2, 21-46. 

Williamson, K. (1955) Migrational drift and the Yellow Wagtail complex. Brit. Birds, 48, 382-403. 
Willis, S.G., Hill, J.K., Thomas, C.D., Roy, D.B., Fox, R., Blakeley, D.S. & Huntley, B. (2009) Assisted 

colonization in a changing climate: a test-study using two U.K. butterflies. Conservation 
Letters, 2, 46-52. 

Wilson, J.D., Taylor, R. & Muirhead, L.B. (1996) Field use by farmland birds in winter: an analysis of 
field type preferences using resampling methods. Bird Study, 43, 320-332. 

Wilson, J.M. & Cresswell, W. (2006) How robust are Palearctic migrants to habitat loss and 
degradation in the Sahel? Ibis, 148, 789-800. 

Wilson, R.J., Gutiérrez, D., Gutiérrez, J., Martínez, D., Agudo, R. & Monserrat, V.J. (2005) Changes 
to the elevational limits and extent of species ranges associated with climate change. 
Ecology Letters, 8, 1138-1146. 

Winter, M., Devictor, V. & Schweiger, O. (2013) Phylogenetic diversity and nature conservation: 
where are we? Trends in Ecology & Evolution, 28, 199-204. 

Wise, R.M., Reyers, B., Guo, C., Midgley, G.F. & De Lange, W. (2012) Costs of Expanding the 
Network of Protected Areas as a Response to Climate Change in the Cape Floristic Region 

Costos de la Expansión de la Red de Áreas Protegidas como una Respuesta al Cambio Climático en 
la Región Florística del Cabo. Conservation Biology, 26, 397-407. 

Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C.H., Guisan, A. & Distribut, N.P.S. (2008) 
Effects of sample size on the performance of species distribution models. Diversity and 
Distributions, 14, 763-773. 

Wisz, M.S., Pottier, J., Kissling, W.D., Pellissier, L., Lenoir, J., Damgaard, C.F., Dormann, C.F., 
Forchhammer, M.C., Grytnes, J.-A., Guisan, A., Heikkinen, R.K., Høye, T.T., Kühn, I., Luoto, 
M., Maiorano, L., Nilsson, M.-C., Normand, S., Öckinger, E., Schmidt, N.M., Termansen, 
M., Timmermann, A., Wardle, D.A., Aastrup, P. & Svenning, J.-C. (2013) The role of biotic 
interactions in shaping distributions and realised assemblages of species: implications for 
species distribution modelling. Biological Reviews, 88, 15-30. 

Wood, S.N. (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation 
of semiparametric generalized linear models. Journal of the Royal Statistical Society (B), 
73, 3-36. 

Woodward, F.I. (1987) Climate and plant distribution. Cambridge University Press. 
Zakkak, S., Radovic, A., Nikolov, S.C., Shumka, S., Kakalis, L. & Kati, V. (2015) Assessing the effect 

of agricultural land abandonment on bird communities in southern-eastern Europe. 
Journal of Environmental Management, 164, 171-179. 

Zimmermann, N.E., Edwards, T.C., Graham, C.H., Pearman, P.B. & Svenning, J.-C. (2010) New 
trends in species distribution modelling. Ecography, 33, 985-989. 

Zuckerberg, B., Woods, A.M. & Porter, W.F. (2009) Poleward shifts in breeding bird distributions 
in New York State. Global Change Biology, 15, 1866-1883. 

Zurell, D., Grimm, V., Rossmanith, E., Zbinden, N., Zimmermann, N.E. & Schröder, B. (2012) 
Uncertainty in predictions of range dynamics: black grouse climbing the Swiss Alps. 
Ecography, 35, 590-603. 

Zurell, D., Jeltsch, F., Dormann, C.F. & Schröder, B. (2009) Static species distribution models in 
dynamically changing systems: how good can predictions really be? Ecography, 32, 733-
744. 

Zwarts, L. & van Horssen, P. (2009) Living on the edge: wetlands and birds in a changing Sahel. 
KNNV Publishing Zeist. 

 

  



www.manaraa.com

 

148 
 

Appendices 

Table A1: The 154 species excluded from analyses from the 496 species in the EBCC 

atlas (Hagemeijer & Blair 1997). Reason for a species exclusion from the analyses 

include primary association with marine habitats, having less than 20 quantitative 

estimates of abundance across Europe or model convergence failure (indicated below) 

Species  Reason Species  Reason 

Fulmarus glacialis Marine Alca torda Marine 

Pterodro feae Marine Cepphus grylle Marine 

Pterodro madeira Marine Alle alle Marine 

Bulweria bulwerii Marine Fratercula arctica Marine 

Calonect diomedea Marine Anthus petrosus Marine 

Puffinus puffinus Marine Gavia adamsii Small Range 

Puffinus yelkouan Marine Pelecanus onocrotalus Small Range 

Puffinus mauretanicus Marine Pelecanus crispus Small Range 

Puffinus assimilis Marine Phoenicopterus ruber Small Range 

Pelagodroma marina Marine Cygnus columbia Small Range 

Hydrobates pelagicus Marine Anser albifrons Small Range 

Oceanodroma leucorhoa Marine Anser erythropus Small Range 

Oceanodroma monorhis Marine Branta leucopsis Small Range 

Oceanodroma castro Marine Branta bernicla Small Range 

Phaethon aethereus Marine Marmaronetta angustirostris Small Range 

Morus bassanus Marine Polysticta stelleri Small Range 

Phalacrocorax aristotelis Marine Histrionicus histrionicus Small Range 

Somateria mollissima Marine Bucephala islandica Small Range 

Somateria spectabilis Marine Oxyura leucocephala Small Range 

Arenaria interpres Marine Aegypius monachus Small Range 

Phalaropus fulicarius Marine Circus macrourus Small Range 

Larus sabini Marine Aquila clanga Small Range 

Larus genei Marine Aquila nipalensis Small Range 

Larus audouini Marine Aquila adalberti Small Range 

Larus glaucoids Marine Tetrao mlokosiewiczi Small Range 

Larus hyperboreus Marine Tetraogallus caucasicus Small Range 

Larus marinus Marine Tetraogallus caspius Small Range 

Rissa tridactyla Marine Alectoris barbara Small Range 

Pagophila eburnea Marine Francolinus francolinus Small Range 

Sterna caspia Marine Turnix sylvatica Small Range 

Sterna bengalensis Marine Porphyrio porphyrio Small Range 

Sterna sandvicensis Marine Fulica cristata Small Range 

Sterna elegans Marine Anthropoides virgo Small Range 

Sterna dougallii Marine Glareola nordmanni Small Range 

Sterna fuscata Marine Charadrius leschenaultii Small Range 

Uria aalge Marine Charadrius asiaticus Small Range 

Uria lomvia Marine Pluvialis fulva Small Range 
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Table A1 continued 

Species  Reason Species  Reason 

Pluvialis squatarola Small Range Oenanthe finschii Small Range 

Hoplopterus spinosus Small Range Oenanthe xanthoprymna Small Range 

Chettusia gregaria Small Range Oenanthe leucura Small Range 

Chettusia leucura Small Range Zoothera dauma Small Range 

Calidris canutus Small Range Turdus ruficollis Small Range 

Calidris alba Small Range Locustella lanceolata Small Range 

Calidris minuta Small Range Acrocephalus paludicola Small Range 

Calidris melanotos Small Range Acrocephalus agricola Small Range 

Gallinago stenura Small Range Hippolais caligata Small Range 

Numenius tenuirostris Small Range Hippolais languida Small Range 

Xenus cinereus Small Range Sylvia sarda Small Range 

Stercorarius pomarinus Small Range Sylvia conspicillata Small Range 

Larus ichthyaetus Small Range Sylvia mystacea Small Range 

Larus armenicus Small Range Sylvia nana Small Range 

Gelochelidon nilotica Small Range Phylloscopus inornatus Small Range 

Pterocles orientalis Small Range Phylloscopus lorenzii Small Range 

Pterocles alchata Small Range Parus cyanus Small Range 

Columba trocaz Small Range Sitta krueperi Small Range 

Streptopelia senegalensis Small Range Sitta whiteheadi Small Range 

Cuculus saturatus Small Range Sitta tephronota Small Range 

Nyctea scandiaca Small Range Lanius excubitor Small Range 

Caprimulgus ruficollis Small Range Lanius meridionalis Small Range 

Apus unicolor Small Range Sturnus roseus Small Range 

Apus caffer Small Range Carpospiza brachydactyla Small Range 

Merops superciliosus Small Range Serinus pusillus Small Range 

Chersophilus duponti Small Range Serinus canaria Small Range 

Melanocorypha bimaculata Small Range Loxia scotica Small Range 

Melanocorypha leucoptera Small Range Bucanetes mongolicus Small Range 

Melanocorypha yeltoniensis Small Range Bucanetes githagineus Small Range 

Calandrella rufescens Small Range Carpodacus rubicilla Small Range 

Anthus berthelotii Small Range Pyrrhula murina Small Range 

Anthus hodgsoni Small Range Emberiza leucceophalos Small Range 

Anthus spinoletta Models failed Emberiza cineracea Small Range 

Prunella montanella Small Range Emberiza buchanani Small Range 

Prunella ocularis Small Range Emberiza aureola Small Range 

Prunella atrogularis Small Range Emberiza pallasi Small Range 

Luscinia calliope Small Range Emberiza bruniceps Small Range 

Tarsiger cyanurus Small Range   

Irania gutturalis Small Range   

Phoenicurus erythrogaster Small Range   

Oenanthe deserti Small Range   
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Table A2: Relative Importance (R.I.) of climate to land use in describing the abundance of the 342 

species included for analysis in Chapter 3. 

Species R.I. Species R.I Species R.I.  

Gavia stellata 2.436 Aythya ferina 0.694 Falco columbarius 2.94 

Gavia arctica 2.45 Aythya nyroca 0.314 Falco subbuteo 0.497 

Gavia immer 1.292 Aythya fuligula 2.433 Falco eleonorae 0.784 

Tachybaptus ruficollis 0.767 Aythya marila 1.274 Falco biarmicus 0.809 

Podiceps cristatus 0.517 Clangula hyemalis 1.645 Falco cherrug 2.847 

Podiceps grisegena 0.679 Melanitta nigra 2.414 Falco rusticolus 0.838 

Podiceps auritus 1.891 Melanitta fusca 1.247 Falco peregrinus 0.613 

Podiceps nigricollis 0.361 Bucephala clangula 1.783 Bonasa bonasia 1.482 

Phalacrocorax carbo 1.198 Mergellus albellus 2.415 Lagopus lagopus 2.781 

Phalacrocorax pygmeus 3.705 Mergus serrator 2.145 Lagopus muta 0.609 

Botaurus stellaris 0.247 Mergus merganser 3.047 Tetrao tetrix 1.121 

Ixobrychus minutus 0.536 Pernis apivorus 0.635 Tetrao urogallus 1.116 

Nycticorax nycticorax 0.858 Elanus caeruleus 5.058 Alectoris chukar 1.675 

Ardeola ralloides 0.647 Milvus migrans 1.271 Alectoris graeca 0.367 

Bubulcus ibis 5.501 Milvus milvus 0.984 Alectoris rufa 1.124 

Egretta garzetta 1.619 Haliaeetus albicilla 0.525 Perdix perdix 0.527 

Egretta alba 1.014 Gypaetus barbatus 1.299 Coturnix coturnix 0.551 

Ardea cinerea 0.642 Neophron percnopterus 0.869 Rallus aquaticus 0.487 

Ardea purpurea 1.405 Gyps fulvus 1.118 Porzana porzana 0.509 

Ciconia nigra 0.652 Circaetus gallicus 1.647 Porzana parva 0.445 

Ciconia ciconia 0.522 Circus aeruginosus 0.36 Porzana pusilla 1.61 

Plegadis falcinellus 7.744 Circus cyaneus 1.64 Crex crex 1.208 

Platalea leucorodia 1.448 Circus pygargus 0.405 Gallinula chloropus 0.648 

Cygnus olor 1.379 Accipiter gentilis 0.458 Fulica atra 0.337 

Cygnus cygnus 2.095 Accipiter nisus 0.764 Grus grus 1.262 

Anser fabalis 2.022 Accipiter brevipes 1.961 Tetrax tetrax 1.261 

Anser brachyrhynchus 0.504 Buteo buteo 0.429 Otis tarda 0.406 

Anser anser 1.047 Buteo rufinus 1.506 Haematopus ostralegus 0.595 

Tadorna ferruginea 2.547 Buteo lagopus 8.357 Himantopus himantopus 0.756 

Tadorna tadorna 0.469 Aquila pomarina 1.145 Recurvirostra avosetta 0.197 

Anas penelope 2.312 Aquila heliaca 0.522 Burhinus oedicnemus 1.779 

Anas strepera 0.572 Aquila chrysaetos 0.374 Glareola pratincola 0.597 

Anas crecca 2.922 Hieraaetus pennatus 1.08 Charadrius dubius 0.51 

Anas platyrhynchos 0.912 Aquila fasciatus 0.951 Charadrius hiaticula 0.917 

Anas acuta 2.445 Pandion haliaetus 1.524 

Charadrius 

alexandrinus 0.282 

Anas querquedula 0.698 Falco naumanni 0.688 Eudromias morinellus 0.784 

Anas clypeata 0.744 Falco tinnunculus 0.451 Pluvialis apricaria 2.418 

Netta rufina 0.679 Falco vespertinus 0.745 Vanellus vanellus 0.845 
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Table A2 continued  

 Species R.I.  Species R.I. Species R.I. 

Calidris temminckii 1.86 Columba oenas 1.196 

Calandrella 

brachydactyla 1.285 

Calidris maritima 1.28 Columba palumbus 0.961 Galerida cristata 1.028 

Calidris alpina 0.688 Streptopelia decaocto 0.462 Galerida theklae 0.763 

Limicola falcinellus 1.409 Streptopelia turtur 0.892 Lullula arborea 0.512 

Philomachus pugnax 4.7 Clamator glandarius 0.441 Alauda arvensis 0.44 

Lymnocryptes minimus 2.281 Cuculus canorus 0.515 Eremophila alpestris 0.545 

Gallinago gallinago 2.153 Tyto alba 1.688 Riparia riparia 0.581 

Gallinago media 0.73 Otus scops 1.323 Hirundo rupestris 0.348 

Scolopax rusticola 1.556 Bubo bubo 0.559 Hirundo rustica 0.513 

Limosa limosa 0.37 Surnia ulula 4.428 Hirundo daurica 0.951 

Limosa lapponica 3.144 

Glaucidium 

passerinum 1.225 Delichon urbicum 0.388 

Numenius phaeopus 6.074 Scolopax rusticola 1.556 Anthus campestris 1.683 

Numenius arquata 1.343 Limosa limosa 0.37 Anthus trivialis 1.542 

Tringa erythropus 3.246 Athene noctua 1.019 Anthus pratensis 1.98 

Tringa totanus 0.93 Strix aluco 0.64 Anthus cervinus 2.531 

Tringa stagnatilis 3.013 Strix uralensis 1.226 Motacilla flava 1.046 

Tringa nebularia 2.798 Strix nebulosa 2.678 Athene noctua 1.019 

Tringa ochropus 1.053 Asio otus 0.602 Strix aluco 0.64 

Tringa glareola 2.4 Asio flammeus 2.243 Motacilla citreola 1.576 

Actitis hypoleucos 1.723 Aegolius funereus 1.003 Motacilla cinerea 1.15 

Phalaropus lobatus 4.018 

Caprimulgus 

europaeus 0.573 Motacilla alba 1.266 

Stercorarius parasiticus 0.423 Apus apus 0.568 Bombycilla garrulus 2.479 

Stercorarius longicaudus 2.008 Apus pallidus 3.697 Cinclus cinclus 0.474 

Stercorarius skua 2.57 Alcedo atthis 0.702 Troglodytes troglodytes 1.574 

Larus melanocephalus 0.148 Merops apiaster 1.92 Prunella modularis 1.638 

Larus minutus 1.234 Coracias garrulus 1.349 Prunella collaris 0.398 

Larus ridibundus 0.679 Upupa epops 1.308 Erithacus rubecula 0.721 

Larus canus 2.274 Jynx torquilla 0.643 Luscinia luscinia 1.923 

Larus fuscus 0.533 Picus canus 0.43 Luscinia megarhynchos 2.051 

Larus argentatus 0.717 Picus viridis 0.622 Luscinia svecica 1.163 

Larus cachinnans 0.553 Dryocopus martius 0.758 Phoenicurus ochruros 0.852 

Sterna hirundo 0.989 Dendrocopos major 0.419 Phoenicurus phoenicurus 1.727 

Sterna paradisaea 1.196 Dendrocopos syriacus 1.275 Saxicola rubetra 1.941 

Sterna albifrons 0.316 Dendrocopos medius 0.665 Saxicola torquatus 1.871 

Chlidonias hybrida 0.524 Dendrocopos leucotos 0.596 Oenanthe isabellina 7.447 

Chlidonias niger 0.378 Dendrocopos minor 0.806 Oenanthe oenanthe 2.38 

Chlidonias leucopterus 1.927 Picoides tridactylus 1.835 Oenanthe pleschanka 6.53 

Columba livia 0.573 

Melanocorypha 

calandra 1.513 Oenanthe hispanica 0.874 
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Table A2 continued 

 Species R.I. Species R.I.  Species R.I. 

Monticola saxatilis 0.243 Phylloscopus trochilus 2.405 Sturnus vulgaris 0.921 

Monticola solitarius 2.003 Regulus regulus 1.485 Sturnus unicolor 0.602 

Turdus torquatus 0.806 Regulus ignicapilla 1.18 Passer domesticus 0.458 

Turdus merula 0.593 Muscicapa striata 1.285 Passer X italiae 0.811 

Turdus pilaris 2.92 Ficedula parva 1.58 Passer hispaniolensis 1.572 

Turdus philomelos 1.044 Ficedula semitorquata 1.219 Passer montanus 0.31 

Turdus iliacus 3.366 Ficedula albicollis 1.183 Petronia petronia 0.885 

Turdus viscivorus 0.674 Ficedula hypoleuca 1.759 Montifringilla nivalis 0.438 

Cettia cetti 2.128 Panurus biarmicus 0.16 Fringilla coelebs 0.401 

Cisticola juncidis 1.823 Aegithalos caudatus 0.662 

Fringilla 

montifringilla 5.719 

Locustella naevia 1.16 Parus palustris 0.926 Serinus serinus 1.066 

Locustella fluviatilis 1.235 Parus lugubris 1.51 Carduelis citrinella 0.54 

Locustella luscinioides 0.548 Parus montanus 2.04 Carduelis chloris 0.475 

Acrocephalus melanopogon 0.062 Parus cinctus 2.578 Carduelis carduelis 0.911 

Acrocephalus schoenobaenus 0.881 Parus cristatus 0.911 Carduelis spinus 1.606 

Acrocephalus dumetorum 2.819 Parus ater 1.119 Carduelis cannabina 0.874 

Acrocephalus palustris 0.712 Parus caeruleus 0.611 Carduelis flavirostris 0.612 

Acrocephalus scirpaceus 0.441 Parus major 0.454 Carduelis flammea 3.886 

Acrocephalus arundinaceus 0.391 Sitta europaea 0.417 Carduelis hornemanni 2.066 

Hippolais pallida 1.852 Sitta neumayer 0.75 Loxia leucoptera 2.845 

Hippolais olivetorum 0.905 Tichodroma muraria 0.597 Loxia curvirostra 1.397 

Motacilla citreola 1.576 Certhia familiaris 1.777 Loxia pytyopsittacus 2.609 

Motacilla cinerea 1.15 Certhia brachydactyla 1.178 

Carpodacus 
erythrinus 1.731 

Hippolais icterina 1.491 Remiz pendulinus 0.49 Pinicola enucleator 1.491 

Hippolais polyglotta 2.649 Oriolus oriolus 0.528 Pyrrhula pyrrhula 1.516 

Sylvia undata 1.196 Lanius collurio 0.595 

Coccothraustes 

coccothraustes 0.635 

Sylvia cantillans 1.116 Lanius minor 2.018 Calcarius lapponicus 2.164 

Sylvia melanocephala 1.469 Lanius senator 2.094 Plectrophenax nivalis 1.103 

Sylvia rueppelli 2.245 Lanius nubicus 5.468 Emberiza citrinella 1.34 

Sylvia hortensis 0.91 Garrulus glandarius 0.34 Emberiza cirlus 1.617 

Sylvia nisoria 0.93 Perisoreus infaustus 2.814 Emberiza cia 0.453 

Sylvia curruca 1.56 Cyanopica cyanus 2.539 Emberiza hortulana 1.281 

Sylvia communis 0.642 Pica pica 0.42 Emberiza caesia 1.4 

Sylvia borin 1.532 Nucifraga caryocatactes 1.717 Emberiza rustica 2.488 

Sylvia atricapilla 0.55 Pyrrhocorax graculus 0.25 Emberiza pusilla 2.285 

Phylloscopus trochiloides 1.802 Pyrrhocorax pyrrhocorax 0.968 Emberiza schoeniclus 1.337 

Phylloscopus borealis 2.231 Corvus monedula 0.38 

Emberiza 

melanocephala 1.334 

Phylloscopus bonelli 0.792 Corvus frugilegus 0.385 Miliaria calandra 1.105 

Phylloscopus sibilatrix 1.295 Corvus corone 0.668 

  Phylloscopus collybita 0.916 Corvus corax 0.869 
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Table A3:  The role of species traits in affecting the importance of spatial autocorrelation in 

models across all study species. Estimated coefficients are from AIC-selected and 

phylogenetically corrected GLS regression models of the importance of spatial autocorrelation 

in determining the abundance of a species. P-values significant at the 5% level are shown in 

bold. 

 Estimated 

Coefficient 

Standard 

Error t- value p-value 

Intercept (Habitat generalists) 0.26 0.08 3.18 <0.01 

Primary Habitat association: 
                  1. Coastal -0.05 0.03 -1.89 0.06 

              2. Inland Wetland -0.02 0.02 -1.23 0.22 

              3. Tundra, mires and moorland -0.11 0.02 -5.35 <0.01 

              4. Boreal and temperate forest -0.03 0.02 -1.41 0.16 

              5. Mediterranean -0.13 0.03 -3.90 <0.01 

              6. Agriculture and grassland -0.02 0.02 -1.29 0.20 

              7.Montane grasslands -0.10 0.04 -2.44 0.02 

Log (Body mass) -0.02 0.01 -2.63 0.01 

Lambda: 0.99 

Residual standard error: 0.039 on 267 degrees of freedom 

Adjusted R-squared: 0.173 
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Table A4:  Summaries of the results of four analyses of variance (ANOVAs). Four individual ANOVAs were used to assess the drivers of spatial patterns in the 

relative climatic importance and the importance of APET, MTCO and GDD5 in determining the abundance of species within each UTM grid cell (n=1721).  P-Values 

significant at the 5% level are shown in bold. 

Response Variable Explanatory Variables 

Estimated 

Coefficient 

Standard 

Error 

Degrees of 

freedom Sum Sq Mean Sq F-value P-value 

Explained 

variance (%) 

Relative climate 

importance  

Longitude 0.002 <0.001 1 1.33 1.33 53.81 <0.01 1.2 

Latitude 0.024 0.001 1 63.68 63.68 2585.04 <0.01 57.5 

 

Species Richness -0.001 <0.001 1 2.62 2.62 106.34 <0.01 2.37 

 

Land use heterogeneity 0.072 0.012 1 0.84 0.84 34.26 <0.01 0.76 

  Residuals NA NA 1716 42.27 0.02 NA NA 38.17 

APET Longitude -0.001 0.002 1 0.03 0.03 0.02 0.88 0 

 

Latitude -0.184 0.004 1 3617.56 3617.56 2699.69 <0.01 58.12 

 

Species Richness 0.012 0.001 1 215.19 215.19 160.59 <0.01 3.46 

 

Land use heterogeneity -0.753 0.091 1 92.27 92.27 68.86 <0.01 1.48 

 

Residuals NA NA 1716 2299.42 1.34 NA NA 36.94 

MTCO Longitude 0.065 0.005 1 1102.42 1102.42 165.16 <0.01 4.48 

 

Latitude 0.324 0.008 1 11353 11353 1700.91 <0.01 46.1 

 

Species Richness -0.017 0.002 1 449.45 449.45 67.34 <0.01 1.83 

 

Land use heterogeneity 1.281 0.203 1 266.87 266.87 39.98 <0.01 1.08 

 

Residuals NA NA 1716 11453.7 6.67 NA NA 46.51 

GDD5 Longitude -0.035 0.003 1 312.24 312.24 150.48 <0.01 2.75 

 

Latitude 0.259 0.004 1 7118.14 7118.14 3430.47 <0.01 62.69 

 

Species Richness -0.014 0.001 1 325.9 325.9 157.06 <0.01 2.87 

 

Land use heterogeneity 0.485 0.113 1 38.18 38.18 18.4 <0.01 0.34 

  Residuals NA NA 1716 3560.66 2.07 NA NA 31.36 
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Table A5: Countries providing data for the PECBMS scheme and the period of monitoring used 

for analysis in each country 

Country Monitoring period 

Austria 1998 – 2011 

Belgium 1990 – 2011 

Czech Republic 1982 – 2011 

Denmark 1980 – 2011 

Estonia 1983 – 2011 

Finland 1983 – 2011 

France 1989 – 2011 

Germany 1989 – 2011 

Hungary 1999 – 2011 

Ireland 1998 – 2011 

Italy 2000 – 2011 

Latvia 1995 – 2011 

Netherlands 1990 – 2011 

Norway 1995 – 2011 

Poland 2000 – 2011 

Portugal 2004 – 2011 

Spain 1996 – 2011 

Sweden 1980 – 2011 

Switzerland 1999 – 2011 

United Kingdom 1980 – 2011 
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Table A6: Bird species data. Breeding and non-breeding habitats indicated by the following : 

FA=farmland,WE= wetland, WO=woodland, O=other. Br= Breeding ground, Nb= Non-breeding 

ground 

Species 

Migratory 

Strategy Mass 

Nb 

habitat 

Br 

habitat 

Br 

CST 

Nb 

CST 

PECBMS 

trend 

Accipiter nisus Short 5.481 O O 0.002 0.002 0.998 

Acrocephalus 

arundinaceus Long 3.303 WE WE 0.006 0.001 1.011 

Acrocephalus 

palustris Long 2.477 WE O -0.014 -0.001 0.998 

Acrocephalus 

schoenobaenus Long 2.416 WE WE -0.007 0.006 1.001 

Acrocephalus 

scirpaceus Long 2.51 WE WE 0.002 0.002 0.999 

Actitis hypoleucos Long 3.945 WE WE -0.012 0.006 0.987 

Alauda arvensis Short 3.616 OC FA 0.01 0.01 0.982 

Anas platyrhynchos Short 6.987 WE WE 0.001 0.004 1.009 

Anthus pratensis Short 2.912 OC FA -0.008 0.007 0.972 

Anthus trivialis Long 3.223 WO WO -0.008 0.001 0.975 

Apus apus Long 3.627 O O 0.014 -0.01 0.999 

Ardea cinerea Short 7.274 WE WE 0.003 0.004 1.027 

Buteo buteo Short 6.876 O O 0.005 0 1.023 

Carduelis cannabina Short 2.728 OC FA 0.011 0.013 0.968 

Carduelis carduelis Short 2.747 O O 0.018 0.013 1.022 

Carduelis chloris Short 3.325 O O 0.016 0.011 1.005 

Carduelis flammea Short 2.565 O O -0.01 -0.01 0.98 

Carduelis spinus Short 2.674 WO WO -0.003 0.009 0.99 

Ciconia ciconia Long 8.153 OC FA 0.008 0.005 1.013 

Circus aeruginosus Short 6.637 WE WE -0.005 0.004 1.041 

Coccothraustes 

coccothraustes Short 3.989 WO WO 0.003 0.009 1.012 

Columba oenas Short 5.635 WO WO 0.004 0.01 1.009 

Columba palumbus Short 6.194 O O 0.012 0.009 1.02 

Corvus frugilegus Short 6.19 OC FA 0.002 0.003 1.028 

Corvus monedula Short 5.505 O O 0.007 0.006 0.993 

Cuculus canorus Long 4.727 WO O -0.001 -0.001 0.989 

Cygnus olor Short 9.177 WE WE -0.004 0.007 1.018 

Emberiza citrinella Short 3.277 OC FA 0.004 0.003 0.985 

Emberiza hortulana Long 3.17 OC FA -0.004 -0.007 0.938 

Emberiza schoeniclus Short 2.907 WE WE -0.01 0.011 0.992 

Erithacus rubecula Short 2.901 O O 0.008 0.011 1.011 

Ficedula hypoleuca Long 2.451 WO WO -0.015 0.011 0.988 

Fringilla coelebs Short 3.04 O O 0.015 0.011 1.002 

Fringilla 

montifringilla Short 3.178 O O -0.021 0.01 0.974 

Fulica atra Short 6.621 WE WE 0.004 0.007 1.01 

Gallinago gallinago Short 4.754 O O -0.014 0.006 0.976 

Gallinula chloropus Short 5.58 WE WE 0.01 0.003 1.003 
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Table A6 continued 

Species 

Migratory 

Strategy Mass 

Nb 

habitat 

Br 

habitat 

Br 

CST 

Nb 

CST 

PECBMS 

trend 

Garrulus glandarius Short 5.081 WO WO 0.012 0.012 1.008 

Hippolais icterina Long 2.681 WO O -0.002 0.002 0.983 

Hirundo rustica Long 2.76 O FA 0.023 -0.007 0.993 

Jynx torquilla Long 3.512 WO O 0.004 0.007 0.972 

Lanius collurio Long 3.398 WO FA 0.008 0 1 

Limosa limosa Long 5.728 OC FA -0.004 0.003 0.972 

Locustella fluviatilis Long 2.896 WO O -0.006 0.011 0.977 

Luscinia luscinia Long 3.17 WO O -0.007 -0.004 0.998 

Luscinia 

megarhynchos Long 2.907 O O 0.017 0.009 0.983 

Miliaria calandra Short 4.047 OC FA -0.002 -0.002 0.97 

Motacilla alba Short 3.045 O O -0.007 0.002 0.997 

Motacilla cinerea Short 2.845 WE WE 0.007 0.005 1.001 

Motacilla flava Long 2.632 O FA -0.009 0.005 0.974 

Muscicapa striata Long 2.681 WO O 0.001 -0.007 0.985 

Numenius phaeopus Long 6.001 WE O -0.022 -0.008 1.005 

Oenanthe oenanthe Long 3.105 WO O -0.012 0.008 0.967 

Oriolus oriolus Long 4.369 WO O 0.012 -0.005 1.002 

Parus ater Short 2.208 WO WO 0.008 0.005 0.995 

Parus caeruleus Short 2.588 O O 0.013 0.013 1.014 

Parus major Short 2.944 O O 0.006 0.006 1.004 

Phoenicurus ochruros Short 2.803 O O 0.006 0 1.01 

Phoenicurus 

phoenicurus Long 2.674 WO WO -0.008 0.009 1.009 

Phylloscopus collybita Long 2.015 O WO 0.005 0.003 1.019 

Phylloscopus sibilatrix Long 2.104 O WO -0.001 0.007 0.976 

Phylloscopus trochilus Long 2.163 WO O -0.007 -0.002 0.985 

Pluvialis apricaria Short 5.366 O O -0.014 0.019 0.998 

Prunella modularis Short 2.981 O O -0.007 0.009 0.988 

Pyrrhula pyrrhula Short 3.082 WO WO -0.001 0.003 0.984 

Regulus ignicapilla Short 1.723 WO WO 0.004 0.011 0.997 

Regulus regulus Short 1.74 WO WO 0 0.006 0.982 

Saxicola rubetra Long 2.809 WO FA 0.001 0.003 0.978 

Serinus serinus Short 2.416 OC FA 0.008 0.006 0.973 

Streptopelia turtur Long 4.883 WO FA 0.022 0.01 0.961 

Sturnus vulgaris Short 4.381 OC FA 0.003 0.014 0.981 

Sylvia atricapilla Short 2.741 O O 0.009 0.006 1.03 

Sylvia borin Long 2.632 WO O 0.002 0 0.993 

Sylvia communis Long 2.674 WO FA 0.007 -0.002 1.011 
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Table A6 continued 

Species 

Migratory 

Strategy Mass 

Nb 

habitat 

Br 

habitat Br CST 

Nb 

CST 

PECBMS 

trend 

Sylvia curruca Long 2.313 WO O 0 0.002 1.001 

Sylvia nisoria Long 3.127 O FA 0.013 0.004 0.959 

Tringa glareola Long 4.29 OC O -0.014 0.001 0.994 

Tringa ochropus Short 4.268 WE WE 0.004 0.002 1.008 

Troglodytes 

troglodytes Short 2.186 O O 0.01 0.01 1.014 

Turdus iliacus Short 4.114 O O -0.011 0.014 0.996 

Turdus merula Short 4.727 O O 0.014 0.013 1.011 

Turdus philomelos Short 4.199 O O -0.004 0.007 1.004 

Turdus pilaris Short 4.644 O O -0.013 0.007 0.999 

Turdus viscivorus Short 4.745 WO WO 0.001 0.01 0.992 

Vanellus vanellus Short 5.421 OC FA -0.006 0.009 0.972 
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Table A7: Median AUC results for the 4 distribution modelling techniques for the combined resident and migrant breeding ranges (108 species in total) and 

the migrant non-breeding ranges (87 species in total). Figures in brackets indicate range of AUC values across all relevant species. 

 

 

 

 

 

Table A8: Candidate model set derived from global model during model selection and subsequently used for model averaging. Values for model parameters 

are the model coefficients for continuous values and the presence or absence of factor variables.  

Intercept Breeding 

ground 

CST 

Breeding 

habitat 

association 

log(Mass) Migratory 

strategy 

Non-

breeding 

ground 

CST 

Non-

breeding 

habitat 

Breeding 

CST* 

Migratory 

strategy 

Degrees 

of 

Freedom 

Log-

likelihood 

Δ 

AICc 

Akaike 

Weight 

0.962 0.322 + 0.004 +   + 9 252.64 0.00 0.27 

0.962 0.602 + 0.003 +    8 251.12 0.55 0.20 

0.962 0.643 + 0.004     7 249.90 0.56 0.20 

0.958 -0.045  0.004 +  + + 9 252.29 0.71 0.19 

0.962 0.608 + 0.003 + -0.195   9 251.36 2.56 0.08 

0.962 0.641 + 0.004  0.027   8 249.91 2.98 0.06 

 

Modelling Technique Breeding ranges Non-breeding ranges 

GLM 0.962 (0.844-0.995) 0.940 (0.771-0.985) 

GAM 0.963 (0.815-0.993) 0.938 (0.794-0.985) 

GBM 0.946 (0.792-0.984) 0.947 (0.784-0.993) 

RF 0.947 (0.776-0.986) 0.953 (0.763-0.991) 



www.manaraa.com

 

160 
 

Table A9: Standardised Model-averaged coefficients from OLS regression models of the 

population trends since 1980, including the measure of relative variable importance in the final 

averaged model.  (R
2
=0.48) 

 

Table A10: Summary of one-sample Mann-Whitney tests results 

 

 

 

 

 

 

 

   Estimate  Adjusted 

S.E.  

z-value  P-value  Relative 

variable 

importance  

Intercept (Breeding Habitat: 

other, Non-breeding Habitat: 

Other, Migratory 

Description: Long-distance)  0 0 NA  NA  NA  

Breeding CST  0.22 0.17 1.28 0.2 1 

Breeding Habitat  

    

0.81 

Farmland -0.46 0.09 4.9 <0.01**  

 Woodland -0.02 0.09 0.18 0.86 

 Wetland 0.1 0.09 1.08 0.28 

 Log(Mass)  0.31 0.09 3.33 <0.01**  1 

Migratory description (Short-

distance Migrant)  0.14 0.09 1.52 0.13 0.74 

Breeding CST* Migratory 

description (Short-distance 

Migrant)  0.26 0.14 1.84 0.07* 0.46 

Non-breeding habitat:  

    

0.19 

Open -0.43 0.1 4.51 <0.01**  

 Woodland -0.12 0.1 1.18 0.24 

 Wetland 0.08 0.1 0.79 0.43 

 Non-breeding CST  -0.03 0.1 0.31 0.76 0.14 

* = significant at p<0.1, **= significant at p<0.05 

Migratory Strategy Breeding Ground CST V-value p-value 

Long-distance Negative 26 0.10 

Long-distance Positive 48 0.21 

Long-distance Stable 16 0.15 

Short-distance Negative 15 0.12 

Short-distance Positive 209 <0.01 

Short-distance Stable 125 0.24 
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Figure A1: The area of study. Shading represents the proportion of species present within each 

UTM grid square represented with quantitative ordinal estimates of abundance.  
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Figure A2: Differing model performance, measured using Cohen’s Weighted Kappa Coefficient 

(Landis & Koch 1977), between models trained including marine cells in the SAC calculation as a 

zero (1) and those including marine cells in the SAC calculation as missing data (2). A Kruskal-

Wallis rank sum test revealed no significant difference (Χ= 1.7328, p-value = 0.1881), as indicated 

by notches on box plots. 
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Figure A3:  Model performance, measured using Cohen’s Weighted Kappa Coefficient (Landis & 

Koch 1977), for models trained using an increasing number of neighbouring cells, as indicated by 

the order of neighbours, in the measure of spatial autocorrelation. First order neighbours constitute 

all cells adjacent to the cell of interest. Second order neighbours, include cells adjacent to first 

order neighbours when calculating the measure of spatial autocorrelation, along with first order 

neighbours, and so forth over increasing orders of neighbours.  
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Figure A4: Mean importance of individual land use variables in determining local abundance for 

species with different primary habitat associations. Here, for the purpose of comparison, the 

summed importance of individual land use variables for each individual species was scaled to 100 

and a mean taken across all species associated with each primary habitat association. N values 

indicate number of species associated with each primary habitat. 
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 Figure A5: Spatial distribution of the mean relative importance of a variable for determining the 

abundance of European birds averaged across all species within a UTM grid cell: a) arable b) 

barren c) coastal, d) forest, e) grassland, f) shrubland, g) urban and h) wetland land use variables. 

Grey regions indicate areas omitted from analysis due to paucity of quantitative data. Note different 

scales for each plot. Figures (e) to (h) are overleaf. 
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Figure A5: Continued  
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Figure A6: Spatial distribution of species richness across the region used in the study. Colours 

indicate the total number of species in each grid cell. 
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Figure A7: Example of sample blocking used to account for SAC within the SDMs. Here the 

combined are of Europe and Africa has been divided into 10 sampling blocks according to the 

ecoregion to which they belong and their bioclimate. This sampling procedure is designed so that 

mean bioclimate is similar across all blocks but that the full range of bioclimates is covered within 

each block. 
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Figure A8: Convergence rates for the Gibbs sampling procedure. Each line represents the mean 

convergence rate across the ten projections for each of the 181 species.  
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Figure A9: Mean AUC across the 10 models for each species for models both with and without an 

SAC term (n=181). 
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Figure A10: Abundance predictions across an area included in model calibration (Germany, 

Denmark and The Netherlands) from the three methods: a) abundance predictions from a model 

without SAC, b) abundance predictions using a single iteration of SAC, and c) after updating the 

abundance predictions using Gibbs sampling. Bars represent the mean proportion of predictions for 

each abundance class averaged across all 181 species. The number above each bar indicates 

number of observed cells within each abundance class. 
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 Figure A11: Abundance predictions across an area included in model calibration (Great Britain 

and Ireland) from the three methods: a) abundance predictions from a model without SAC, b) 

abundance predictions using a single iteration of SAC, and c) after updating the abundance 

predictions using Gibbs sampling. Bars represent the mean proportion of predictions for each 

abundance class averaged across all 181 species. The number above each bar indicates number of 

observed cells within each abundance class. 

 


